Таблица несущей способности грунтов

Несущая способность грунта определяется на основе ряда характеристик почвы. Для того чтобы получить все необходимые показатели, потребуется выполнить ряд тестов. Они дадут возможность узнать точную несущую способность грунта на конкретном участке. Соответствующие эксперименты проводятся с почвой, полученной непосредственно на запланированном месте строительства.

Что такое несущая способность грунта?

Несущая способность грунта — это показатель давления, которое может выдерживать грунт. Его указывают либо в Ньютонах на квадратный сантиметр (Н/см²), либо в киолграмм-силе на 1 сантиметр квадратный (кгс/см²), либо в мегапаскалях (МПа).

Данная величина используется при проектировании фундаментов для сравнения нагрузки, которую оказывает на почву конструкция здания с учётом возможного слоя снега на крыше и давления ветра на поверхность стен. Даже при точном подсчете влияния каждого из указанных факторов на соотношение несущей способности поверхности земли на участке к совокупной нагрузке от конструкции здания, эту цифру берут с запасом.

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.

Уточнённая таблица с поправками на текучесть и пористость грунта

Существет ещё одна таблица несущей способности, позволяющая более точно определить цифры на участке, где известны коэффициенты пористости и показатели текучести почвы.

Влияние коэффициента текучести грунта на его несущую способность указаны в таблице. Средняя текучесть грунта зависит от его типа и коэффициента водонасыщения. Эти расчёты выполнить достаточно трудно, поэтому размещаем таблицы, которые описывают поведение образца грунта, характеризующее его текучесть.

Также расчетное сопротивление зависит от коэффициента пористости Е, который нужно устанавливать с помощью экспериментального взятия проб непосредственно на будущей строительной площадке.

Для теста потребуется взять кубик грунта 10х10Х10 см с объёмом О1 = 1000 см³ так, чтобы он не рассыпался. Далее этот кубик взвешивается и определяется его масса (М), после чего грунт измельчают. Затем, с помощью мерного стакана устанавливается объём измельченного грунта также в кубических сантиметрах (О2).

Далее нужно узнать объёмный вес исходного кубика (ОВ1) и измельченного грунта без пор (ОВ2). Для этого следует определенную вначале массу (М) разделить на (О1), чтобы получить (ОВ1) и затем разделить эту же величину (М) на (О2), чтобы получить (ОВ2). Исходный объём О1 изначально известен и равен 1000 см³, а объём измельченного грунта О2 берется из опыта с мерным стаканом.

Осталось только рассчитать пористость Е, которая равна 1 — (ОВ1/ОВ2)

Теперь, зная коэффициент текучести и пористость грунта, можно исходя из табличных цифр с определенной точностью сказать, какая именно несущая способность является расчетной именно для вашего участка. Если вы использовали экспериментальное выявление пористости, то убедитесь, что было проведено хотя бы 3 опыта, чтобы получить нужную величину с достаточно высокой точностью. При желании получить максимально близкие к реальности данные, используйте специальный калькулятор, где есть возможность указывать все влияющие на конечную цифру коэффициенты вот здесь.

Несущая способность грунта

Несущая способность грунтов, что это, как её определить, таблица несущей способности. Как избежать ошибок при вычислении несущей способности грунта в Москве. Всё это и многое другое на странице.

Дмитрий, 29 лет, Москва. “Уважаемые специалисты, буду очень благодарен за ваш совет по вопросу несущей способности грунта. Я приобрел небольшой участок в Орехово-Зуевской, планирую построить там двухэтажную дачу из сруба на свайном фундаменте. Все работы находятся сейчас в стадии проектирования, поскольку я застопорился на определении несущей способности грунта. Подскажите пожалуйста, как правильно определить и рассчитать данную характеристику. Насколько я знаю, тут необходимо сделать все предельно точно, поскольку неправильный расчет крайне негативно скажется на характеристиках будущего фундамента. С уважением.”

Ответ на этот вопрос будет интересен широкому кругу читателей, и имеет смысл подготовить детальную информацию, объясняющую все нюансы определения несущей способности грунта.

Из данной статьи вы узнаете, какие факторы влияют на несущие характеристики почвы, как определить тип грунта и рассчитать свойственную ему несущую способность согласно требованиям действующих строительных норм и правил.

Что влияет на несущую способность грунта

Несущие свойства грунта – это один из главных исходных параметров, который необходимо знать при проектировании фундаментов любого типа. Именно от них зависит, сможет ли конкретный участок почвы выдерживать передаваемую на него фундаментом нагрузку, исходящую от массы здания.


Рис. 1.1: Схема работы сваи в плотном слое почвы

Исходя из несущей способности определяется требуемая площадь опирания железобетонной сваи на грунт – чем ниже данная характеристика, тем большего сечения нужно использовать ЖБ сваи.

На величину несущей способности почвы оказывают влияние три основных фактора:

На практике наибольшая взаимосвязь наблюдается между несущими характеристиками и влажностью грунта, которая непосредственно связана с уровнем грунтовых вод. Конкретный грунт, в сухом состоянии и при пропитке влагой, может изменять свои несущие свойства в двукратных пределах.

Совет эксперта! Данная взаимосвязь не свойственна песчаным грунтам крупных и средних фракций, на них увлажнение не оказывает никакого влияния.

Любой грунт, кроме скальных пород, по своей структуре напоминает губку – он состоит из отдельных частиц и пор между ними, пространство которых заполнено влагой либо воздухом. При сильных внешних нагрузках происходит уменьшение объема грунта из-за его механического уплотнения, что приводит к усадкам почвы и, как следствие, деформации стоящих на ней фундаментов.


Рис. 1.2: Внешний вид разных видов грунта

Чем больше изначальная плотность почвы, тем лучшими несущими характеристиками она обладает. Плотные грунты не подвергаются усадкам, при правильном проектировании фундамента они способны выдерживать даже тяжелые многоэтажные здания.

Совет эксперта! Плотность любого грунта растет по мере увеличения глубины его залегания (из-за давления вышерасположенных слоев почвы), строить свайные фундаменты можно даже на территориях с проблемным грунтом с низкими несущими характеристиками, при условии, что подошва сваи будет опираться на глубинный слой почвы, обладающий достаточной плотностью.

Важно! Любые работы с фундаментом должны начинаться с испытания грунтов, подробнее: Испытания грунтов

Как определить тип грунта

Все грунты делятся на две основные группы:


Рис. 1.3: Пробные заборы грунта из разных шурфов (пробных скважин)

В свою очередь нескальная почва делится на следующие типы грунтов:

Совет эксперта! Определение типа грунта на строительном участке должно выполняться в результате геодезических исследований, в процессе которых берется забор проб почвы, характеристики которой анализируются в строительной лаборатории с помощью специального оборудования.


Рис. 1.4: Схема распространения разных видов грунтов на территории России

При отсутствии возможности провести геодезию грунтов можно попытаться сделать это самостоятельно, однако за расчеты фундамента на основе данных о грунте, полученных кустарным способом, не возьмется ни одна серьезная проектировочная организация.

Для этого вам потребуется на строительном участке с помощью обычного садового бура сделать скважину глубиной в два метра. По внешнему виду породы, извлекаемой на поверхность в процессе бурения, определите тип грунта:

Важно! Информация о глубине промерзании почвы в Вашем регионе и о том, как её определить: Глубина промерзания почвы

Определяем плотность почвы и уровень грунтовых вод

Чтобы определить уровень грунтовых вод в центре и по углам строительного участка необходимо проделать скважины глубиной в 2.5 метра. Спустя несколько часов после бурения на дне скважин появится вода – опустите в скважину деревянную рейку соответствующего размера и определите, какое расстояние от поверхности земли до начала воды в скважине.


Рис. 1.5: Скопление грунтовых вод в пробной скважине

Учитывайте, что уровень грунтовых вод на разных сторонах выделенного под строительство участка может сильно отличатся – все расчеты необходимо осуществлять на основании самого высокого показателя УГВ.

Совет эксперта! Если грунтовые воды на площадке залегают на глубине большей, чем глубина промерзания почвы, что свидетельствует о отсутствии склонности грунта к морозному пучению, на участке можно возводить практически любой тип фундамента, однако если соотношение противоположное, остается лишь два варианта – ленточный фундамент глубокого заложения (возведение которого на большую глубину может быть финансово неоправданным) либо фундамент на железобетонных сваях (оптимальный в большинстве случаев вариант).

В отличие от УГВ, точную плотность почвы самостоятельно определить невозможно. Делается это в лаборатории на основе данных полевых исследований с использованием специальной техники. Существует два основных метода определения плотности почвы – метод режущего кольца (для несвязных грунтов) и метод парафинирования (для связной почвы).

Метод режущего кольца заключается в заборе образца почвы с помощью кольца-пробоотборника, который в дальнейшем подлежит опрессовке, взвешиванию и расчету по нормативным формулам.


Рис. 1.6: Реализация метода парафинирования почвы

При парафинировании из грунта вырезается образец объемом 0,5 м3, который покрывается слоем парафина. Масса образца определяется с помощью опускания его в резервуар с водой и определения объема вытесненной жидкости. Дальнейшие расчеты проводятся по типичным формулам.

Читайте также:  Приспособление электролобзика для ровного пила без сколов

Несущая способность грунта таблица

Предлагаем вашему вниманию таблицу, в которой приведены несущие характеристики основных видов грунтов:


Рис. 1.7: Несущая способность грунта в Кгс/см2

Рис. 1.8: Несущая способность грунта в Н/см2

Риски ошибок в исследования несущей способности грунта

Совет эксперта! Правильно рассчитать и спроектировать свайный фундамент можно только с учетом несущих характеристик почвы, определить которые самостоятельно, пренебрегая геодезическими исследованиями, невозможно.

Проектирование свайного фундамента на основе несоответствующих реальности показателей несущей способности почвы чревато следующими последствиями:

Рис. 1.9: Возможный результат неправильно определения несущей способности грунта

Наши услуги

Компания “Богатырь” обладает опытным персоналом и современным исследовательским и строительным оборудованием. Мы гарантируем качественное выполнение всего спектра свайных работ – от геодезического исследования строительного участка до поставки и забивки свай.

Основные акценты в деятельности компании “Богатырь” стоят на качестве, оперативности и приемлемой ценовой политике. Мы никогда не затягиваем реализацию проекта и сдаем все работы точно в срок. При этом мы предлагаем своим клиентам цены на услуги, с которыми не способна конкурировать ни одна московская строительная компания. Для заказа забивки свай, лидерного бурения или погружения шпунтов, оставьте заявочку.

Как определить несущую способность грунта под фундамент

Степень восприимчивости почвы к нагрузкам называют несущей способностью грунта. Показатель характеризует максимальное усредненное давление между подошвой фундамента и земли, при котором не происходят сдвиги, оползни и провалы в окружающем слое. На величину значения влияет вид почвы, ее физические и механические характеристики.

  1. Что такое несущая способность грунта и на что она влияет
  2. Определение плотности почвы и уровня грунтовых вод
  3. Как определить несущую способность грунта под фундамент самостоятельно
  4. Риски ошибок в исследовании несущей способности грунта

Что такое несущая способность грунта и на что она влияет

Понятие рассматривают как давление, воспринимаемое единицей площади основания, при котором оно не деформируется и не приводит к разрушению строения. Геологи исследуют грунт, чтобы определить его свойства и рассчитать несущие характеристики.

Восприимчивость почвы к давлению зависит от условий:

Показатели несущей способности влажного и сухого грунта отличаются, т.к. при насыщении влагой повышается текучесть и снижается сопротивление нагрузкам. Если слой контактирует с жидкостью, он относится к категории насыщенных. Исключение составляют песчаные крупно и среднезернистые почвы, которых не касается деформация так как они пропускают влагу, а не скапливают ее.

Изыскания проводят для определения, подходит слой для установки фундамента или нужно усилить его для повышения несущей способности. Не проектируют опорные элементы на глубине, где граничат разные пласты. Подошву фундамента закладывают ниже отметки стояния почвенной влаги, т. к. насыщенные породы вспучиваются при замерзании.

Чувствительность грунта к нагрузкам снижают путем искусственного уплотнения или введения химических модификаторов. В первом случае вбивают сваи, чтобы уменьшить объем пустот в почве. Химические реагенты способствуют адгезии (сцеплению) отдельных частиц почвы.

Определение плотности почвы и уровня грунтовых вод

Плотность определяют в зависимости от пористости основания. В почве есть твердые части, между ними находятся полости, наполненные водой или воздухом в зависимости от условий. Если превысить максимально допустимую нагрузку, сдвиги приведут к разрушению дома. Плотные грунты с малым числом или одиночными кавернами относят к наиболее прочным основаниям.

Плотность находят отношением веса почвенного образца при стандартной влажности к объему, который он занимает. Расчет делают по формуле p = B / V, где:

Породы, которые залегают неглубоко от поверхности, считаются неплотными, с понижением отметки грунты становятся толще, надежнее и прочнее, т. к. на их давят вышележащие пласты. В России наблюдают пески и глины, есть торфяники, болотистые местности и регионы со скальными породами.

Грунтовые жидкости находят в слабых и рыхлых породах или трещинах плотных пластов. Почвенная влага обычно поднимается постепенно и не имеет напора.

Уровень стояния зависит от факторов:

Влага внутри слоев может быть агрессивной, содержать кислоты, щелочи, сульфаты, углекислоту — такие добавки разрушают бетон и металл фундаментов. Определяют уровень жидкости путем бурения в полевых условиях шурфов, которые отрывают на несколько метров, чтобы они были ниже предполагаемой отметки опоры. Скважину накрывают и оставляют на 5 – 7 суток. Если в ней не обнаружена вода, почва не содержит влаги. В другом случае для выполнения строительных работ по правилам нужен дренаж (система отвода воды).

Как определить несущую способность грунта под фундамент самостоятельно

Несущая способность является основой при проведении подсчета в процессе проектирования. Классифицируют грунты в рамках сведений документа ГОСТ 25.100-2011 «Грунты. Классификация». Нормы сопротивления давлению находятся в таблицах нагрузки на грунт материалов СП 22.133.30-2016 «Основание зданий и сооружений». Здесь же приводятся стандартные модули расчёта, формулы, коэффициенты.

Несущую способность находят математическим выражением R = R · (1 + K · (B -100) / 100) · (N + 200) / 2 · 200 — для заглубления до двух метров, и формулой R = R · (1 + K · (B -100) / 100) + K2 · Q · (N – 200) — если конструкция погружается более двух метров, где:

Тип грунта можно определить своими руками. Берут грунт из скважины на глубине погружения опоры, смачивают водой и скатывают жгут, затем его соединяют в кольцо. Элемент без трещин, легко соединяется — почва связная, чаще это глины. При сгибании появляются трещины, значит, в руках смесь глины и песка, последнего содержится 10 – 30%. Жгут трудно скатать, а соединить кольцом невозможно — песчаная почва.

Далее используют таблицы СНиП несущей способности грунта, где по типу почвы можно найти требуемое значение.

Риски ошибок в исследовании несущей способности грунта

Появляется опасность сдвига почвы в результате неточного расчёта глубины заложения и габаритов фундамента. Здание весит тонны, на грунт оказывается сильное давление, поэтому к расчетам привлекают строительных инженеров и техников, чтобы в будущем исключить проблемы с деформацией.

Неправильное нахождение несущей способности почвы влечет неприятности в виде:

В расчете применяют много коэффициентов, которые нужно точно определить в таблице, иначе фундамент будет запроектирован с ошибками, которые легко править на бумаге, но трудно устранить после возведения стен и кровли. Шатается коробка дома, прогибаются полы в результате чрезмерных усадок после неправильно установленных свай. В здании идут трещины по углам, перекашиваются оконные и дверные коробки в проемах, если сдвинется ленточный фундамент.

Несущая способность грунтов

Несущая способность грунта – это его основанная характеристика, которую необходимо знать при строительстве дома. Несущая способность показывает какую нагрузку может выдержать единица площади грунта и измеряется в кг/см 2 или т/м2. Несущая способность определяет, какой должна быть опорная площадь фундамента дома: чем хуже способность грунта выдерживать нагрузку, тем больше должна быть площадь фундамента. Сама несущая способность грунта зависит от трех факторов: тип грунта, степень его уплотненности и насыщенность грунта влагой. Несущие способности разных грунтов в кг/см 2 в разном состоянии представлены в таблице 1.

Грунтплотныйсредней плотности
Крупный гравелистый песок65
Песок средней крупности54
Мелкий маловлажный песок43
Мелкий песок, насыщенный влагой32
Супеси сухие32,5
Супеси, насыщенные влагой (пластичные)2,52
Суглинки сухие32
Суглинки, насыщенные влагой (пластичные)31
Глины сухие62,5
Глины, насыщенные влагой (пластичные)41

В таблице 2, указано какую нагрузку может выдержать каждый грунт при опоре на него круглых свай разного диаметра, это особенно важно учитывать при расчёте количества свай под строительство.

Увеличение влажности грунта снижает его несущую способность в несколько раз. Только крупные пески и пески средней крупности не меняют своих свойств при увеличении влажности. Избыточная влажность грунта, скорее всего, связана с высоким уровнем грунтовых вод.

Чтобы узнать несущую способность грунта необязательно обращаться за помощью к геологам, в случае самостоятельного строительства дома можно определить тип грунта на глаз. Для этого простым земляным буром можно пробурить в земле скважину глубиной 2м или выкопать яму лопатой. При этом сразу будет понятно, какой грунт находится на этой глубине и насколько он увлажнен.

Отличить песок от глины не составляет труда: в песке ясно видны отдельные песчинки, при растирании песчаного грунта меду ладонями они отчетливо чувствуются. Крупный песок имеет размер частиц от 0,25 до 5мм, такие частицы хорошо видны невооруженным глазом, а песок средней плотности имеет размер песчинок до 2мм. Супесь содержит не более 10% глинистых частиц, в сухом состоянии она крошится, если скатать из нее шарик, то он рассыпается при легком давлении на него. Суглинок содержит от 10% до 30% глинистых частиц, обладает большей пластичностью, чем супесь. Если из суглинка сделать шар и раздавить его, то он превращается в лепешку с трещинами по краям. Глина – наиболее пластичный грунт, если раздавить шар, сделанный из глины, то он превратится в лепешку, на краях которой не будет трещин.

Влажность грунта можно так же определить на глаз. Если в вырытой яме или пробуренной скважине сухо, т.е. вода там откровенно не скапливается, значит грунт можно считать сухим. Если же на дне скважины через некоторое время накапливается вода, значит уровень грунтовых вод близко и грунт надо считать насыщенным влагой. Влажность и пластичность глины можно определить так: если лопата входит в глину легко и глина хорошо прилипает к лопате, то она пластичная и влажная. В противном случае ее можно считать сухой.
Плотность грунта – величина непостоянная. Находящийся глубоко под землей грунт будет плотным, поскольку на него давят слои грунта, находящиеся выше. При бурении скважины, извлеченный на поверхность земли грунт становится рыхлым и имеет насыпную плотность, которая гораздо меньше. При расчете несущей способности, грунт, находящийся на глубине 0,8-1 м и более можно считать плотным.

Исследование грунта происходит далеко не всегда, и даже при профессиональном проектировании дома, таких данных может не быть. Поэтому зачастую для упрощенных и приблизительных расчетов, несущую способность грунта принимают равной 2 кг/см 2 .

Читайте так же:

Глубина промерзания грунта
Промерзание грунта приводит к его пучению и негативному воздействию на фундамент здания. Глубина промерзания зависит от типа грунта и климатических условий.

Уровень грунтовых вод
Грунтовые воды – это первый от поверхности земли подземный водоносный слой, который залегает выше первого водоупорного слоя. Они оказывают негативное воздействие на свойства грунта и фундаменты домов, уровень грунтовых вод необходимо знать и учитывать при заложении фундамента.

Пучинистый грунт
Пучинистый грунт – это такой грунт, который подвержен морозному пучению, при промерзании он значительно увеличивается в объеме. Силы пучения достаточно велики и способны поднимать целые здания, поэтому закладывать фундамент на пучинистом грунте без принятия мер против пучения нельзя.

Силы морозного пучения грунтов
Морозное пучение – это увеличение объема грунта при отрицательных температурах, то есть зимой. Происходит это из-за того, что влага, содержащаяся в грунте, при замерзании увеличивается в объеме. Силы морозного пучения действуют не только на основание фундамента, но и на его боковые стенки и способны выдавить фундамент дома из грунта.

Расчет фундамента для дома: нагрузка на фундамент и грунт
На этапе проектирования будущего дома в числе прочих расчетов необходимо выполнить расчет фундамента. Цель этого расчета – определить, какая нагрузка будет действовать на фундамент и грунт, и какой должна быть опорная площадь фундамента. Для того, чтобы определить суммарную нагрузку на фундамент, необходимо посчитать вес будущего дома со всеми эксплуатационным нагрузками (проживающими там людьми, мебелью, инженерным оборудованием и т.п.)

Расчетное сопротивление грунта основания

Определение расчетного сопротивления грунта онлайн и с помощью таблиц СНиП. Несущая способность глинистых и песчаных грунтов.

Расчетное сопротивление грунта (R) – это один из наиболее важных параметров при строительстве фундамента, так как позволяет определить предельно возможные значения массы вышележащей конструкции, которую способна выдержать подстилающая поверхность.

В случае превышения допустимых значений показателя несущей способности грунта, под подошвой фундамента формируются области предельного равновесия. Другими словами, грунт расположенный снизу не выдерживает нагрузки и стремится в сторону наименьшего сопротивления, то есть на поверхность. Последствия выражаются в виде бугров и валов, расположенных рядом с границами фундамента.

Самой главной опасностью в данном случае, является нарушение однородности подстилающего грунта. Нагрузка от конструкции начинается распределяться неравномерно, фундамент теряет свою устойчивость, активизируются процессы деформации и в скором времени начинают появляться трещины.

Читайте также:  Смесители Iddis: характеристики и виды

Расчет несущей способности грунта

Определение несущей способности грунта – это достаточно трудоемкий процесс, который можно выполнить подручными средствами (вручную/онлайн) или же воспользоваться услугами геолого-геодезических агенств. Если вы хотите сэкономить и выполнить расчет самостоятельно – KALK.PRO поможет вам в этом нелегком деле!

Мы предлагаем вам воспользоваться нашим удобным онлайн-калькулятором расчета сопротивления грунта на сжатие/сдвиг. По окончанию вычисления вы получите значение расчетного сопротивления в четырех разных единицах измерения (кПа, kH/m 2 , тс/м 2 , кгс/см 2 ). Для того чтобы получить результат расчета, вам необходимо заполнить несколько полей:

Последние две характеристики грунта определяются только для глинистых грунтов.

Калькулятор расчетного сопротивления грунта основания

Для начала нам необходимо выбрать тип расчета. Первый вариант подразумевает, что вы получите отдадите образец грунта в специализированную лабораторию на исследование. Данный способ занимает большое количество времени и средств. Поэтому если у вас не сложный участок и вы уверены, что сможете сделать все своими силами, мы предлагаем воспользоваться вторым вариантом и выполнить расчет на основании табличных данных.

Классификация грунтов

Следующий этап работ связан с определением типа грунта. Согласно СНиП 11-15—74, все виды грунтов делятся на две основные группы:

Первые, представлены горными породами, метаморфического или гранитного происхождения. Встречаются в горных областях и в местах выхода основания тектонической платформы на поверхность (щиты). В нашей стране это территория Карелии и Мурманской области. Горные системы Урала, Кавказа, Алтая, Камчатки, плоскогорья Сибири и Дальнего Востока.

Сопротивление скальных грунтов настолько высоко, что вы можете не производить никаких предварительных расчетов.

Нескальные грунты встречаются повсеместно на равнинах. Они подразделяются на несколько видов, а те в свою очередь на фракции:

Как определить тип грунта самостоятельно?

Существует простой дедовский способ определения типа грунта, которым пользовались ваши родители и родители ваших родителей – он заключается в выявлении физико-механических свойств породы.

Для этого необходимо провести отбор проб почвы в крайних точках и в середине участка. Выкопайте ямы на глубину, предполагаемого уровня заложения фундамента и возьмите образецы грунта с каждой контрольной точки.

Подготовьте рабочую поверхность, для того чтобы провести научный эксперимент.

Для наглядности можно посмотреть иллюстрацию ниже:

Если вам не удалось ничего сделать из образца грунта, то для вас расчет несущей способности песчаного грунта закончился. Выберите соответствующий пункт в калькуляторе и нажмите “Рассчитать“.

Несущая способность грунта – Таблица СНиП

Для определения несущей способности глинистых грунтов, нам необходимо получить еще два коэффициента – показатель текучести грунта (IL) и коэффициент пористости (е). Первый показатель можно достаточно легко определить на глаз, если почва откровенно сырая и вязкая – выбирайте IL = 1, если сухая и грубая – IL = 0. Второй коэффициент можно получить только в таблицах из СНиП. Так как все данные находятся в открытом доступе, для вашего удобства мы скопировали таблицы расчетного сопротивления грунта из СП 22.13330.2011.

Несущая способность глинистых грунтов

Глинистые грунты

Коэффициент пористости е

Значения R, кПа, при показателе текучести грунта

Определение несущей способности грунта

Установление несущей способности грунта (табличные значения) находящегося под проектируемым или реконструируемым фундаментом начинают с геологической разведки. Для этого на строительной площадке из скважин или шурфов отбираются и исследуются пробы грунта.

Сначала производится классификация грунта. Гранулометрическим и/или методом отмучивания находится состав грунта и определяется его название.

Затем исследуются физические характеристики грунта. Методом режущего кольца устанавливается плотность грунта, методом высушивания и взвешивания определяется влажность, а скручиванием грунта в жгут и испытание балансирным конусом — консистенция грунта.

Далее делаются дополнительные лабараторные исследования грунта или производится еще несколько вычислений расширяющих количество физических характеристик грунтов.

При невозможности точного установления типа грунта самостоятельно, наличие на участке органических, мерзлых, насыпных грунтов и при любых других сомнениях в классифицировании грунта, для определения несущей способности грунта, нужно привлекать лицензированные геологические организации.

Уровень отвественности здания

Здание или сооружение должно быть отнесено к одному из следующих уровней ответственности: повышенный, нормальный и пониженный (статья 4 пункты 7–10 действующего технического регламента о безопасности зданий и сооружений Федерального закона №384-ФЗ) .

К повышенному уровню отвественности относятся: особо опасные, технически сложные или уникальные объекты.

К пониженному — здания и сооружения временного (сезонного) назначения, а также здания и сооружения вспомогательного использования, связанные с осуществлением строительства или реконструкции либо расположенные на земельных участках, предоставленных для индивидуального жилищного строительства.

Все остальные здания и сооружения относятся к нормальному уровню отвественности.

Формулировка идентификации зданий относящихся к третьему (пониженному) уровню отвественности — расплывчатая. Непонятно, описанны две группы зданий и сооружений: временные и вспомогательные или три группы — временные, вспомогательные и индивидуальные? В Белоруссии жилые индивидуальные дома высотой не более 2 этажей относят к третьей группе отвественности и в России жилые здания высотой до 10 м раньше тоже относили к этой группе. В новом техническом регламенте ясности в этом вопросе нет. Видимо его каждому придется решать самостоятельно. От выбора уровня отвественности зависит объем геологических изысканий и методика расчета фундаментов.

Определение расчетного сопротивления основания R по таблицам

Этот метод применяется для предварительного и окончательного расчета оснований для зданий третьего уровня ответственности находящихся в благоприятных условиях. Либо для предварительного расчета оснований для зданий второго уровня отвественности находящегося в любых, в том числе и неблагоприятных инженерно-геологических условиях.

«Благоприятными» считаются условия, при которых слои грунта в основании залегают горизонтально (уклон слоев не превышает 0,1), а сжимаемость грунта не увеличивается по крайней мере до глубины, равной двойной ширине самого большого отдельного фундамента и четырем ширинам ленточного (считая от уровня его подошвы).

Для фундаментов шириной bo = 1 м и глубиной заложения do = 2 м значения расчетного сопротивления основания (Ro ) приведены в таблицах 11–15. С увеличением или уменьшением глубины заложения фундамента изменяется несущая способность грунта основания. В этом случае расчетные сопротивления основания (R) на различных глубинах следует определять по формулам:

где b — ширина фундамента, м; d — глубина заложения подошвы, м ; γ’— расчетное значение удельного веса грунта, залегающего выше подошвы фундамента, кН/м³; k1 — коэффициент, принимаемый для оснований, сложенных крупнообломочными грунтами и песками, k1 = 0,125; для оснований сложенных пылеватыми песками, супесями, суглинками и глинами, k1 = 0,05; k2 — коэффициент, принимаемый для оснований, сложенных крупнообломочными песчаными грунтами — k2 = 0,25, сложенных супесями и суглинками —k2 = 0,2; глинами — k2 = 0,15.

Расчетные сопротивления крупнообломочных грунтов Ro

Круп­но­об­ло­моч­ные грун­тыЗна­чен­ия Rо, кПа (кг/см²)
Га­леч­ни­ко­вые (ще­бе­ни­стые) с пес­ча­ным за­пол­ни­те­лем600 (6)
Га­леч­ни­ко­вые (ще­бе­ни­стые) с гли­ни­стым за­пол­ни­те­лем при по­ка­за­те­ле те­ку­че­сти:
Ip ≤ 0,5
0,5 Расчетные сопротивления Ro песков

ПескиЗна­чен­ия Ro, кПа (кг/см²),в за­ви­си­мо­сти от плот­но­сти сло­же­ния пес­ков
плот­ныесред­ней плот­но­сти
Круп­ные600 (6)500 (5)
Сред­ней круп­но­сти500 (5)400
Мел­кие:
ма­ло­влаж­ные
влаж­ные и на­сы­щен­ные во­дой
400 (4)
300 (3)
300 (3)
200 (2)
Пы­ле­ва­тые:
ма­ло­влаж­ные
влаж­ные
на­сы­щен­ные во­дой
300 (3)
200 (2)
150 (1,5)
250 (2,5)
150 (1,5)
100 (1)

Расчетные сопротивления Ro глинистых непросадочных грунтов

Гли­ни­стые грун­тыКо­эф­фи­ци­ент по­ри­сто­сти, еЗна­чен­ия Ro, кПа (кг/см²), при по­ка­за­те­ле те­ку­че­сти грун­та
I L = 0I L = 1
Су­песи0,5300 (3)300 (3)
0,7250 (2,5)200 (2)
Су­глин­ки0,5300 (3)250 (2,5)
0,7250 (2,5)180 (1,8)
1200 (2)100 (1)
Гли­ны0,5600 (6)400 (4)
0,6500 (5)300 (3)
0,8300 (3)200 (2)
1,1250 (2,5)100 (1)

Расчетные сопротивления Ro глинистых просадочных грунтов

Гли­ни­стые грун­тыЗна­чен­ия Ro, кПа (кг/см²), гли­ни­стых про­са­доч­ных грун­тов
при­род­но­го сло­же­ния с плот­но­стью в су­хом со­сто­я­нии ρd, т/м³уплот­нен­ных с плот­но­стью в су­хом со­сто­я­нии ρd, т/м³
1,351,551,601,70
Су­песи300 (3) / 150 (1,5)350 (3,5) / 180 (1,8)200 (2)200 (2)
Су­глин­ки350 (3,5) / 180 (1,8)400 (4) / 200 (2)250 (2,5)300 (3)

В числителе приведены значения Ro, относящейся к незамоченным просадочным грунтам со степенью влажности Sr ≤ 0,5; в знаменателе — значения Ro, относящиеся к таким же грунтам с Sr ≥ 0,8, а также к замоченным грунтам.

Расчетное сопротивление грунта основания Ro — это такое безопасное давление, при котором сохраняется линейная зависимость осадок фундаментов, а глубина развития зон местного нарушения прочности под его краями не превышает размера 1/4 ширины подошвы фундамента.

Пример определения расчетного сопротивления грунта основания по таблицам

Определить расчетное сопротивление основания фундамента, имеющего размеры подошвы 2,5×2,5 м, глубину заложения 1 м; здание бесподвальное, III класса. Основание на всю разведанную глубину сложено песком средней крупности, средней уплотненности (γ’ = 20 кН/м³). Подземные воды не обнаружены. Для определения расчетного сопротивления основания правомерно использовать табличные значения величин Ro. Согласно табл. 2 Ro = 400 кПа. По формуле получим: R = Ro [1 +k1(b — bo) / bo] (d + do) /2do = 400 [1 + 0,125(2,5 — 1)/ 1 ](1 + 2)/2×2 = 356 кПа.

Определение расчетного сопротивления основания R по физическим характеристикам грунта

Этот метод применяется для окончательного расчета оснований для зданий второго уровня ответственности.

Расчетное сопротивление грунта основания определяется по формуле:

где m1 и m2 — коэффициенты условий работы, принимаемые по табл. 16; k — коэффициент, k = 1, если характеристики свойств грунтов определены опытным путем, k = 1,1, если характеристики приняты по справочным таблицам; M1, M2, M3 — коэффициенты, принимаемые по табл. 17; kz — коэффициент, при b 10 м — kz = z/b + 0,2 (здесь z = 8 м); b — ширина подошвы фундамента, м; γ — осреднен ное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды), кН/м³; γ’ — то же для грунтов, залегающих выше подошвы; с — расчетная величина удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа; db — глубина подвала, т.е. расстояние от уровня планировки до пола подвала, м. Для сооружений с подвалом шириной менее 20 м и глубиной свыше 2 м принимается db = 2 м, при ширине подвала больше 20, db = 0; d1 — глубина заложения фундамента бесподвальных сооружений от уровня планировки (м) или приведенная глубина заложения фундаментов от уровня пола подвала, определяемая по формуле: d1 = hs + hcfγcf / γ’ ,здесь hs — толщина слоя грунта выше подошвы фундамента под подвалом: hcf — толщина пола подвала; γcf — расчетное значение удельного веса материала пола подвала, кН/м³.

Значения коэффициентов m1 и m2

Грун­тыКо­эф­фи­ци­ент m1Ко­эф­фи­ци­ент m2 для со­ору­же­ний с жест­кой кон­струк­тив­ной схе­мой при со­от­но­ше­нии дли­ны со­ору­же­ния или его от­се­ка к вы­со­те L/H, рав­ном
4 и бо­лее1,5 и ме­нее
Круп­но­об­ло­моч­ные с пес­ча­ным за­пол­ни­те­лем и пес­ча­ные, кро­ме мел­ких и пы­ле­ва­тых1,41,21.4
Пес­ки мел­кие1,31,11,3
Пес­ки пы­ле­ва­тые ма­ло­влаж­ные и влаж­ные1,251,01,2
Пески насыщенные водой1,11,01,2
Пы­ле­ва­то-гли­ни­стые, а так­же круп­но­об­ло­моч­ные с пы­ле­ва­то­гли­ни­стым за­пол­ни­те­лем с по­ка­за­те­лем те­ку­че­сти грун­та или за­пол­ни­те­ля I L ≤ 0,251,251,01,1
То же при 0,25 0,51,11,01,0

Примечания:

1. К сооружениям с жесткой конструктивной схемой относят сооружения, конструкции которых специально приспособлены к восприятию усилий от деформации оснований (подраздел 5.9 СП 22.13330.2011).

2. Для зданий с гибкой конструктивной схемой значение коэффициента m2 принимают равным единице.

3. При промежуточных значениях L/H коэффициент m2 определяют интерполяцией.

4. Для рыхлых песков m1 и m2 принимают равными единице.

Значения коэффициентов М

Угол внут­рен­не­го тре­ния, φ, градКо­эф­фи­ци­ен­ты
M1M2M3
1,003,14
10,011.063,23
20,031,123,32
30,041,183,41
40,061,253,51
50,081,323,61
60,101,393,71
70,121,473,82
80,141,553,93
90,161,644,05
100,181.734,17
110,211,834,29
120,231,944,42
130,262,054,55
140,292.174.69
150,322,304,84
160,362,434,99
170,392,575,15
180,432,735,31
190,472,895,48
200,513,065,66
210,563,245,84
220,613,446,04
230,693,656.24
240,723,876,45
250,784,116,67
260,844,376,90
270,914,647,14
280,984,937,40
291,065,257,67
301,155,597,95
311,245,958,24
321,346,348,55
331,446,768,88
341,557,229,22
351,687,719,58
361,818,249,97
371,958,8110,37
382,119,4410,80
392,2810,1111,25
402,4610,8511,73
412,6611,6412,24
422,8812,5112,79
433,1213,4613,37
443,3814,5013,98
453,6615,6414,64

Пример определения расчетного сопротивления грунта основания по физическим характеристикам грунта

Определить расчетное сопротивление основания фундамента наружной стены бесподвального двухэтажного здания длиной 10 м Фундамент ленточный, его габариты: ширина Ь = 1,0 м; глубина заложения d1 =1,8 м, db = 0.

Характеристики свойств грунтов определены в лаборатории; число определений позволило выполнить статистическую обработку данных. От поверхности до уровня подошвы фундамента залегает насыпной грунт, его Удельный вес γ’ = 17 кН/м³. Под подошвой фундамента на всю разведанную глубину (9 м) суглинок мягкопластичный I L = 0,6 ). Расчетные значения: удельного веса γ = 20 кН/м³, угла внутреннего трения φ = 15°; удельного сцепления c = 30 кПа.

По табл. 17 для значения φ = 15° находим значения безразмерных коэффициентов: М1 = 0,32; М2 = 2,30; М3 = 4,84.

По табл. 16 коэффициент m1 = 1,1 (I L > 0,5); коэффициент m2 = 1,0 ( соотношение L/H здания более 4).

Коэффициент кz = 1, поскольку ширина фундамента b

Определение несущей способности грунта

Распределение нагрузок на грунт от фундамента

«Иметь твердую почву под ногами» – это не фигура речи для строителей. Это основа всей системы закладки фундамента. Твердая, казалось бы, земля под ногами уступает силам, которые давят на нее при постройке даже небольшого и легкого на вид здания. В течение одного сезона построенный дом может заметно осесть, если фундамент под ним выполнен неправильно.

Расчет предельного давления на грунт для устойчивости дома зависит от многих факторов:

Кроме изменений в толще грунта, связанных с давлением на него основания дома, сам грунт подвержен внутренним силам, приводящим в движения почвенные пласты – их называют пучинистостью грунта.

Самую большую нагрузку на грунт оказывает вес дома. Он распределяется на каждую точку грунта в зависимости от площади соприкосновения основания дома с грунтом. Чем больше площадь, тем меньше удельное давление на грунт. Это мы хорошо знаем из опыта.

Площадку, оказывающую давление на грунт, называют подошвой фундамента. Чем она больше, тем ниже давление на грунт при одном и том же весе дома.

Способность сопротивляться нагрузкам называют несущей способностью грунта.

Соответственно, определены два пути уменьшения общего давления, оказывающего основанием здания на грунт – увеличение площади давления или увеличение точек соприкосновения основания с грунтом. Площадь соприкосновения определяется типом фундамента – монолитной плиты, ленты по периметру дома или отдельных столбов.


Сопротивление грунта нагрузкам для разных видов фундамента. а — плитный, б — ленточный, в — свайный

Слой почвы, на которую давит фундамент, называют несущим слоем. Давление, оказываемое на верхний несущий слой, передается и на пласты, лежащие ниже. Поэтому необходимо учитывать их структуру и несущую способность.

В связи с тем, что зимой земля промерзает, а летом – оттаивает, это тоже учитывается в расчете несущей способности грунта.

Методы расчета


Несущая способность грунта

Оболочки в условиях строительной площадки проходят несколько испытаний. Число контрольных исследований выбирает автор проекта с учетом полевых условий, конструкции здания, проектной способности свай по рекомендациям строительных ГОСТ на изыскание грунтов. Ревизионные испытания выполняют в начале погружения, чтобы не перерасходовать бетон и металл и полностью использовать проектную прочность.

Контрольные изыскания проводят методами:

Статичному испытанию подвергается 1% от количества свай на площадке, результат зависит от сложности грунта, формата нагрузок и количества разновидностей вертикальных опор. Динамической нагрузке подвергается 2% от количества стержней, но не меньше 6 – 9 в зависимости от класса строения.

Несущие характеристики сваи и грунта можно рассчитать по формулам теоретическим, динамическим и пробным способом.

Теоретический

Качественный результат расчета взаимодействия свай и почвы получается с учетом пластики грунтового слоя, сжимаемости фундаментного стержня. Определяются локальные области предельного напряжения и перераспределение касательных нагрузок. Минимальное расстояние между винтовыми элементами принимается в размере двойного лопастного диаметра, а максимум выбирается по способности ростверка и опоры сопротивляться давлению.

Пролет между столбами рассматривают жестко закрепленной балкой с двух торцов, нагрузку определяют так, чтобы не возникали деформации, а центральный прогиб был не больше нормативов.

Теоретически расчет несущей способности сваи выражается формулой W = H / d, где:

Величина H определяется умножением площади опоры или на расчетное сопротивление почвы там, где она закладывается в землю. Для распространенных почвенных слоев такие показатели приводятся в строительных таблицах при условии заглубления больше 1,5 метра. При погружении земля теряет плотность, начальные характеристики длительно восстанавливаются. Принимается максимальное расстояние между опорами на уровне трех метров. Если при расчете получаются большие промежутки, добавляют несколько стержней для уменьшения пролета.

Динамический


Контрольные испытания проводят зондированием и специальным расчетом, но таких итогов недостаточно и требуется испытание почвенных слоев погружением эталонных опор. Сваи отягощаются на уровне расчетной нагрузки, которая находится по нормативным документам СП 24.13330 – 2011, где регламентируется проектирование свайных фундаментов.

Технология динамического метода заключается в том, что при заглублении столба увеличивается сопротивление почвенного слоя. Принимается во внимание связь между силой удара при погружении и несущей характеристикой элемента. Забивка выявляет слабые места свайного поля и оболочек для вычисления диаметра и протяженности опорного столба.

Динамические изыскания не требуют дорогого оборудования и больших затрат, подходят для испытания разных типоразмеров. Минусом считается факт, что меняющаяся нагрузка иногда завышает показатель прочности, и появляется неточность при проведении расчета. Динамические испытания проводят опытные техники, для этого метода не подходят нестабильные или сыпучие основания.

Вид свай выбирают по свойствам пласта, который располагается под острием стержня. Сваи-стойки монтируют, если используется малосжимаемые скальные почвы. В других вариантах ставят сваи трения (защемленные в земле). Длина выбирается с учетом того, что стержень заделывается в тело ростверка на 5 – 10 см при вертикальной нагрузке.

Пробный

Процесс пробного заглубления сопровождают техническими документами, где проставляют размер, вид и расчетную нагрузку на сваю. Для проведения требуется подробный план фундамента с приведенными шурфами зондирования, которые исследовались геологами. Указывается прохождение коммуникаций и электрических кабелей.

Пробные забивки проводят в случае:

Погружение сопровождается техническими документами с указанием расчетных нагрузок, типа оболочек. Результаты испытания заносятся в журнал, где описываются полученные повреждения, категория молота и число ударов до конечного погружения.

Структура грунта и физические характеристики

Грунт состоит из трех компонентов: твердых частиц, воды и газа. Твердые частицы в основном определяют свойства грунта, а водяные и газовые составляющие могут их существенно изменять. Твердые частицы в почве образуют губчатую структуру. Чем плотнее они сами и чем плотнее они прилегают друг к другу, чем выше сила их сцепления, тем плотнее грунт в целом. Плотность своеобразной «губки» увеличивается с глубиной залегания – верхние слои оказывают давление на нижние. Однако этот фактор не столь существенен на тех глубинах, на которые закладывается фундамент.

Вода в состав грунта попадает из атмосферы (дождь, таяние снега) или поднимается из глубинных источников, благодаря капиллярному строению почвы. Чем выше залегание грунтовых вод, тем насыщеннее водой верхний слой грунта.

Воздух заполняет пористую структуру грунта – чем рыхлее почва, тем больше в ней воздуха.

Для исследования грунтов берут в расчет их физические и механические характеристики. Физические:

Типы грунтов

Структура почв существенно зависит от геологической истории данной местности. По общепринятой теории, затвердевание Земли привело к образованию монолитного слоя литосферы, который впоследствии разрушался под действием атмосферы (ветра, дождя, солнца, колебаний температуры) – вплоть до образования из горного монолита мельчайших частиц.

Этапы такого разрушения целостных пород и отразились в разных свойствах конкретного участка земной поверхности.

Грунты подразделяют на:

  1. Скальные – массив горных пород с высокой плотностью. Монолитен и несжимаем.
  2. Крупнообломочные – смесь крупных камней и частиц, с включением мелких. Обладает высокой пористостью и малой сжимаемостью.
  3. Песчаные – состоят из мелких твердых частиц, практически не связанных между собой. Отличаются высокой сыпучестью и плотностью в объеме.
  4. Глинистые – состоят из самых мелких (мелкодисперсных) частиц (менее 0,1 мм в сечении), сильно связанных между собой за счет сил поверхностного натяжения присутствующей в их толще воды. Характеризуются высокой сжимаемостью и пластичностью.

Песчаные и глинистые грунты

Строительство в основном ведется на песчаных и глинистых грунтах. Скальные породы вообще не требуют фундамента, но они и непригодны для земледелия.

Мы подробнее рассмотрим наиболее распространенные типы грунтов, на которых обычно ведется строительство домов.

Песчаные грунты подразделяются на несколько категорий, в зависимости от размера составляющих их частиц:

  1. Гравелистый песок – с песчинками от 0,25 до 5 мм
  2. Крупный песок – с частицами от 0,25 до 2 мм
  3. Средний песок – 0,1 – 1 мм
  4. Мелкий, пылевидный песок – с частицами менее 0,1 мм


Песчаный грунт
В свою очередь глинистые грунты подразделяются на:

  1. Супеси – содержащие до 10% глинистых частиц, хорошо крошатся.
  2. Суглинки – с содержанием глинистых частиц от 10 до 30%. Имеют высокую пластичность и хорошее сцепление. Крошатся при высыхании.
  3. Глины – с наибольшим содержанием мелкодисперсных частиц. Высокопластичны, и как раз являются материалом для работы скульпторов, так как не разрушаются при затвердевании. В то же время достаточно плотны при высыхании.


Пласты глинистого грунта в разрезе

Расчет

Расчет несущей способности — это основная цель геологических изысканий. Выполнять его можно только после определения типа пород внутри скважин и получения чертежей геологических разрезов на территории строительной площадки.

Чертеж поможет определить положение слоев пород в толще земли и даст представление о возможности строительства на площадке.

Несущая способность (R) определяется по формуле согласно алгоритму:

  1. Значение R0 (сопротивление осевому сжатию) определяется с помощью таблицы и напрямую зависит от типа грунта;
  2. Рассчитывается глубина промерзания. Это значение индивидуально для каждого региона. Будет зависеть от типа пород в верхних слоях;
  3. Выбирается оптимальная глубина заложения в толще одного из прочных слоев непучинистого грунта, ниже глубины промерзания;
  4. Выполняется расчет по формулам: R=R0*[1+k1*(b-100)/100]*(d+200)/2*200 — при принятой глубине заложения до 2 м и R=R0*[1+k1*(b-100)/100]+k2*g*(d-200) — когда глубина заложения превышает 2 м.

Данные для расчета:

После нахождения фактической несущей способности ее сравнивают с требуемой. Если вторая будет больше первой, то придется менять конструкцию будущего дома (увеличивать площадь опирания фундамента на основание или глубину заложения, менять вид фундамента, выбирать в качестве основания другой, более прочный слой).

Несущая способность грунта

Основной характеристикой грунта под строительства является его несущая способность. Она показывает, какую удельную нагрузку способен выдержать грунт, то есть какая площадь грунта выдержит определенный вес без разрушения и проседания. Измеряется несущая способность в кг/см2 или тн/м2

Приведем соответствующие параметры для некоторых видов грунта

Из этих параметров видим влияние влажности на прочность грунта. Это приводит к необходимости учитывать глубину залегания подземных вод, сильно влияющих на влажность почвы. Другими словами, при расчете фундамента следует учитывать не только сам вид грунта, но его поведение при увлажнении. Это касается обильных осадков, а также явлению, которому нужно уделить особое внимание – пучинистости грунта, т.е. увеличению его удельного объема при замерзании до отрицательных температур.

Методика расчета прочности кровельного покрытия и выбор марки несущего профлиста

Расчет несущей способности профнастила необходим для правильного выбора профилированного листа. Он сравнительно несложен и позволяет подобрать профиль с оптимальным соотношением несущей способности и цены материала.

Рассмотрим пример расчета нагрузки на профилированный лист кровельного покрытия и выберем профнастил с учетом данных, полученных в результате проведенного расчета.

Для начала принимаем следующие исходные данные для расчета: здание имеет двускатную кровлю с углом наклона 35°, проекция ската на горизонтальную плоскость равна 6,0 м, строительство расположено в Московской области.

Общая величина нагрузки на профилированный лист кровельного покрытия получается путем сложения снеговой и ветровой нагрузок, а также собственного веса профнастила.

Вес профнастила определяется площадью кровельного покрытия, величиной необходимых монтажных нахлестов и равен 8,6 кг/м2.

Расчетная снеговая нагрузка определяется местом расположения строительства. Московская область относится к III снеговому району, для которого снеговая нагрузка составляет 180 кг/м2. С учетом уклона кровли, снеговая нагрузка для нашего здания составляет 180х(60°-35°)/(60°-25°)=128,6 кг/м2, где 35° — принятый угол наклона кровли.

По карте ветровых нагрузок находим, что Московская область относится к I ветровому району, для которого ветровая нагрузка составляет 32 кг/м2. С учетом уклона кровли, коэффициент аэродинамического сопротивления покрытия из профлиста будет равен приблизительно 0,3, соответственно ветровая нагрузка составит 32х0,3=9,6 кг/м2.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *