Пример решения задачи.

Тип соединеня – стыковое.

Марка свариваемых материалов – Сталь 20.

Марка электрода – УОНИ 13/55.

В данном случае соединение стыковое – С39.

Рисунок 2. Разделка кромок свариваемых деталей по ГОСТ 5264-80

Рисунок 3. Сварной шов по ГОСТ 5264-80

Определим площадь поперечного сечения наплавленного металла определяется по формуле:

Рисунок 4. Форма поперечного сечения наплавленного металла в стыковом шве

Таблица 34. Размеры разделки кромок

сhbsqα/2
2,690,5

Диаметр электродов выбирают в зависимости от толщины ме­талла, катета шва, положения шва в пространстве. Примерное соотношение между толщиной металла S и диаметром электрода d при сварке шва в нижнем положении составляет:

Таблица 35. Зависимость диаметра электрода от толщины металла

Толщина (S), ммДиаметр электрода (d ), мм
1-22-3
3-53-4
4-104-5
12-245-6
30-606 и более

При сварке швов стыковых соединений площадь поперечного сечения (мм ) металла, наплавляемого за один проход, при которой обеспечиваются оптимальные условия формирования, должна составлять:

для первого прохода (при проварке корня шва)

для последующих проходов

Зная общую площадь поперечного сечения наплавленного металла и площади поперечного сечения наплавленного металла при первом и каждом последующем проходах, найдём число проходов:

Зная длину шва можно легко определить , т. е массу наплавленного металла (г) при силе сварочного тока I (А) за время t (ч), полученного за счёт металлического стержня электрода и дополнительного металла, если он содержался в покрытии электрода.

В случае кольцевого соединения длину шва длина шва определяется по формуле:

Исходя из этого можно определить основное время сварки:

И соответственно коэффициент наплавки:

Список использованной литературы.

1. Акулов А. И., Бельчук Г. А. Технология и оборудование сварки плавлением. — М.: Машиностроение, 1977.- 94 с.

2. Справочник по сварке. / Под редакцией Винокурова В. А. – М.: Машиностроение, 1993.

3. Справочник: сварка, резка и контроль. / Под редакцией Чернышёва Г. Г.

4.Николаев Г.А, Винокуров В.А. Сварные конструкции/ Расчет и проектирование.- Высшая школа,1990.

Сварка оцинковки, несколько способов решения задачи

ОСНОВНЫЕ МЕТОДЫ И СПОСОБЫ СВАРКИ

Сварка это процесс получения неразъемного соединения посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действии того и другого. В настоящее время создано очень много методов сварки. Все известные виды сварки принято классифицировать по основным физическим, техническим и технологическим признакам. По физическим признакам, в зависимости от формы используемой энергии, предусматриваются три вида сварки: термическая сварка, термомеханическая сварка и механическая сварка.

Термический вид сварки включает все методы с использованием тепловой энергии (дуговая сварка, газовая сварка, плазменная сварка и т. д.).

Термомеханический вид объединяет все методы сварки, при которых используются давление и тепловая энергия (контактная сварка, диффузионная сварка)

Механический nbsp;вид включает методы сварки, осуществляемые с помощью механической энергии (холодная сварка, сварка трением, ультразвуковая сварка, сварка взрывом).

Методы сварки классифицируются по следующим техническим признакам:

• по типу защитного газа (в активных газах, в инертных газах);
• по способу защиты металла в зоне сварки (на воздухе, в среде защитного газа, в вакууме, под слоем флюса, с комбинированной защитой);
• по степени механизации (ручная, механизированная, автоматизированная, автоматическая);
• по характеру защиты металла в зоне сварки (со струйной защитой, в контролируемой атмосфере).


НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ МЕТОДЫ СВАРКИ

Дуговая (электродуговая) сварка. Дуговая сварка металла это сварка плавлением, при которой нагрев свариваемых кромок осуществляется теплом электрической дуги. Наибольшее применение получили четыре способа дуговой сварки.

Ручная дуговая сварка металла

Может производиться двумя способами:неплавящимся электродом и плавящимся электродом.
При ручной дуговой сварке неплавящимся электродом свариваемые кромки изделия приводят в соприкосновение. Между неплавящимся (угольным или графитовым) электродом и изделием возбуждают дугу. Кромки изделия и вводимый в зону дуги присадочный материал нагреваются до плавления, образуется ванночка расплавленного металла. После затвердевания металл в ванночке образует сварной шов. Этот способ используется при сварке цветных металлов и их сплавов, а также при наплавке твердых сплавов.
При ручной дуговой сварке плавящимся электродом используется так называемый штучный электрод с покрытием-обмазкой. Этот способ является основным при ручной сварке. Электрическая дуга возбуждается аналогично первому способу, но расплавляет и электрод и кромки изделия. Получается общая ванна жидкого металла, которая, охлаждаясь, образует шов.


Автоматическая и полуавтоматическая сварка металла под флюсом

Автоматическая и полуавтоматическая сварка металла под флюсом выполняется путем механизации основных движений, выполняемых сварщиком при ручной сварке металла – подачи электрода в зону дуги и перемещения его вдоль свариваемых кромок изделия. При полуавтоматической сварке механизирована подача электрода в зону дуги, а перемещение электрода вдоль свариваемых кромок производит сварщик вручную. При автоматической сварке металла механизированы все операции, необходимые для этого процесса. Жидкий металл в ванночке защищают от воздействия кислорода и азота воздуха расплавленным шлаком, образованным от плавления флюса, подаваемого в зону дуги. Такая сварка металла обеспечивает высокую производительность и хорошее качество сварного шва.

Дуговая сварка металла в защитном газе

Дуговая сварка металла в защитном газе выполняется неплавящимся (вольфрамовым) или плавящимся электродом. В первом случае сварной шов формируется за счет металла расплавленных кромок изделия. При необходимости в зону дуги подается присадочный материал. Во втором случае подаваемая в зону дуги электродная проволока расплавляется и участвует в образовании шва. Защиту расплавленного шва от окисления и азотирования осуществляют струей защитного газа, оттесняющего атмосферный воздух из зоны дуги.

Электрошлаковая сварка металла

Электрошлаковая сварка металла осуществляется путем плавления металла свариваемых кромок изделия, расположенных вертикально или под углом 45 о , и электрода теплотой, выделяемой током при прохождении через расплавленный шлак. Кроме того, шлак защищает расплавленный металл от воздействия воздуха. Снизу к свариваемым изделиям приваривается вручную поддон. По обе стороны зазора между изделиями прижимаются формирующие шов медные ползуны с водяным охлаждением. Затем на поддон насыпается специальный флюс, над которым располагаются одна или две электродные проволоки. Дуга возбуждается под флюсом между электродами и поддоном. В зону горения дуги электродная проволока подаётся специальным механизмом. За счёт тепла дуги электродная проволока и флюс расплавляются, в результате образуется ванна расплавленного металла и над ней шлаковая ванна. В дальнейшем необходимое тепло образуется за счёт прохождения тока через расплавленный шлак, обладающий высоким сопротивлением (согласно закону Ленца-Джоуля). По мере накопления в ванне жидкого металла и шлака медные ползуны вместе с механизмом подачи электродной проволоки и флюса перемещаются автоматически снизу вверх со скоростью подъёма жидкого металла.

Особые виды сварки металла

В промышленности и строительстве все более широкое распространение получают тугоплавкие и химически активные металлы и сплавы. Они применяются в особо ответственных узлах. Для получения высококачественных швов в этих случаях используют источники с высокой концентрацией теплоты и осуществляют сварку в среде с очень низким содержанием кислорода, азота и водорода. Наиболее часто применяются электронно-лучевая и плазменная сварки.

Электронно-лучевая сварка металла осуществляется путем использования кинетической энергии концентрированного потока электронов, движущихся с большой скоростью в вакууме. Устройство для электронно-лучевой сварки похоже на устройство кинескопа (катод, ускоряющий электрод, магнитная линза, напряжение 30-100 кВ).

Плазменная сварка металла основана на использовании струи ионизированного газа – плазмы, содержащего электрически заряженные частицы и способного проводить ток. Энергия дуговой плазменной струи зависит от сварочного тока, напряжения, расхода газа и др. факторов. Источники питания дуги должны иметь рабочее напряжение более 120 В. Плазмообразующий газ служит также защитой расплавленного металла от окружающего воздуха.


КЛАССИФИКАЦИЯ МЕТОДОВ СВАРКИ ПЛАВЛЕНИЕМ

Существующие методы сварки плавлением могут быть классифицированы по виду источников теплоты, способы сварки – по характеру защиты ванны и свариваемого металла от взаимодействия с атмосферой воздуха, особенности введения теплоты, степени автоматизации процессов и другим признакам. По виду источника теплоты могут быть выделены методы сварки плавле­нием: дуговая электрошлаковая; электронно-лучевая; свето-лучевая; газовая; плазменная; термитная.

По характеру защиты свариваемого металла и сварочной ванны от окружающей атмосферы могут быть выделены способы сварки со шлаковой, газошлаковой и газовой защитой.

По особенностям введения теплоты различают способы сварки с непрерывным нагревом и импульсным.

По степени автоматизации процесса существующие способы сварки могут быть разделены на ручную, механизированную и автоматическую.

Характеристика наиболее широко применяемых в промышлен­ности методов и способов сварки плавлением, учитывающая отме­ченные технологические признаки, приведена в таблице

Отличительные признаки способов сварки

Дуговая сварка

Электрошлаковая сварка

Теплота, выделяющаяся при бомбардировке поверхности на­грева заряженными частицами, и теплота плазмы столба дуги

Теплота, выделя­ющаяся при прохо­ждении тока через расплавленный шлак

Газошлаковая и газовая инертными и активными газа­ми. Местная и общая. При нормальном внешнем и повы­шенном давлениях и в вакууме

Ручная, механизированная и автоматическая

Автоматическая и механизированная

Отличительные признаки способов сварки

Лазерная сварка

Электронно-лучевая сварка

Теплота, выделяющаяся при бомбардировке поверх­ности нагрева электронами, получившими ускорение в поле высокого напряжения

Теплота, выделяющая­ся при поглощении по­верхностью нагрева ин­дуцированного излуче­ния с определенной дли­ной волны

Общая в вакууме

Газовая инертными га­зами. Местная и общая. При нормальном и повы­шенном давлениях и в вакууме

Отличительные признаки способов сварки

Газовая сварка

Плазменная сварка

Термитная сварка

Теплота, полу­ченная при сжи­гании горючего газа в кислороде

Теплота, содержащаяся в ионизированном газовом потоке

Теплота, со­держащаяся в перегретом жидком рас­плаве

Газовая и га­зошлаковая

Газовая, инерт­ными и актив­ными газами. Местная и общая

Ручная и авто­матически

СВАРИВАЕМОСТЬ И ПАЯЕМОСТЬ МЕТАЛЛОВ

Одним из важнейших свойств металлов является их способ-ность подвергаться той или иной обработке. Можно говорить о способйости металлов пластически деформироваться в холод­ном или горячем состоянии, обрабатываться резанием, изме­нять свои свойства под влиянием термической обработки и т. д.. Очевидно, можно и необходимо говорить о способности метал­лов соединяться в процессе сварки и пайки – о их свариваемо­сти и паяемости. Что следует понимать под свариваемостью и паяемостью металлов и как их оценивать?

Содержание понятия свариваемость металлов не остава­лось неизменным. Впервые оно было сформулировано в конце 20-х, в начале 30-х годов прошлого века. В соответствии с уровнем развития сварки и встречающимися затруднениями под свариваемостью понимали отношение металлов к тепло­вому воздействию. При сварке сталей с повышенным содержа­нием углерода в то время наибольшие затруднения вызывало предупреждение появления трещин в околошовных участках.
В последующие годы, с одной стороны, резко расширилась номенклатура металлов и сплавов, используемых в сварных, конструкциях, с другой, – были разработаны и применены на практике многие новые методы сварки, значительно усовершен­ствована технология сварочных процессов, достигнуты большие-успехи в разработке теоретических основ сварки. В этих усло­виях изменились и те затруднения, с которыми приходилось, иметь дело при сварке.
Очевидно, что при определении понятия свариваемости ме­таллов необходимо исходить из физической сущности сварки и отношения к ней металлов. Сварку целесообразно рассматри­вать как сочетание нескольких одновременно протекающих; процессов: взаимная кристаллизация металлов, тепловое воз­действие на металл в околошовных участках и плавление, ме­таллургическая обработка и кристаллизация металла шва. Под свариваемостью, следовательно, необходимо понимать отноше­ние металлов к этим основным процессам.
Если металлы однородны, то взаимная кристаллизация лю­бой формы между ними принципиально возможна. Однако свое­образные условия протекания сварки (высокая температура, рост дендритов от поверхностей частично оплавленных зерен, большая скорость кристаллизации, значительная степень де­формации и др.) в некоторых случаях могут вызвать пониже­ние свойств сварных соединений в области взаимной кристал­лизации.
Понижение свойств металла в области взаимной кристал­лизации возможно и при неправильном подборе присадочного-металла. Например, при сварке алюминиевых сплавов часто-используют присадочные прутки из алюминиевокремниевого-сплава с 5% Si марки АК- Однако при сварке сплавов, содер­жащих магний, магний взаимодействует с кремнием присадоч­ного металла, образуя Mg2Si, включения которого неблагопри­ятно влияют на свойства сварного соединения.
При сварке однородных металлов процесс взаимной кри­сталлизации принципиально возможен. Следует лишь оцени­вать в необходимых случаях степень возможного понижения свойств соединения в области взаимной кристаллизации.
При соединении разнородных металлов процесс взаимной кристаллизации далеко не всегда возможен. Например, эта имеет место тогда, когда металлы образуют химические соеди­нения. В этих случаях внутрикристаллическая форма связи,

между металлами возникнуть не может. Очевидно, такие ме­таллы принципиально сварены быть не могут. Это дает право ввести понятие о принципиальности свариваемости металлов. Принципиальная свариваемость есть способность пары метал­лов в условиях сварки образовать соединения на основе вза­имной кристаллизации (внутрикристаллическая форма связи).
В тех относительно редких случаях, когда разнородные ме­таллы могут быть сварены, необходимо оценивать свойства •сварных соединений в области взаимной кристаллизации – сте­пень их принципиальной свариваемости.
Поскольку существуют два различных вида процесса сварки (сварка с расплавлением металлов и сварка в пластическом со­стоянии), то принципиальную свариваемость необходимо со­ответственно подразделять для каждого из этих видов про­цесса.
Условия протекания второго и третьего процессов опреде­ляются методом сварки и его режимами. Поэтому отношение к ним металлов называется технологической свариваемостью. Технологическая свариваемость, в свою очередь, подразде­ляется на тепловую свариваемость (отношение металлов к теп­ловому воздействию) и металлургическую свариваемость (от­ношение металлов к плавлению, металлургической обработке и последующей кристаллизации).
Оценка тепловой свариваемости производится по отноше­нию к вполне определенному свариваемому металлу. Несколько сложнее с оценкой металлургической свариваемости.
Если свариваются детали из одного металла и применяется аналогичный присадочный металл (или последний отсутствует), оценка металлургической свариваемости производится для вполне определенного металла. Если же свариваются неодина­ковые металлы или присадочный металл иной, то оценку метал­лургической свариваемости необходимо производить с учетом образующихся сплавов в металле шва, что несколько услож­няет вопрос. С другой стороны, путем соответствующего под­бора присадочного металла, обеспечивающего получение оп­тимального состава металла шва, можно улучшить металлур­гическую свариваемость металлов.
Оценку технологической свариваемости необходимо произ­водить применительно к конкретному методу сварки, а иногда и к определенным технологическим режимам. Очень часто ме­талл хорошо сваривается одним методом и неудовлетворитель­но другим. Например, дуралюмин удовлетворительно свари­вается точечной сваркой и плохо – газовой.
Технологическая свариваемость не есть нечто присущее ме­таллам и сплавам. С развитием технологии сварки плохо сва­ривающиеся металлы и сплавы часто становятся хорошо сваривающимися. Правильная оценка технологической сваривае­мости требует глубокого анализа процесса сварки и хорошего изучения свойств свариваемого металла.
В настоящее время разработано много методик определе­ния тепловой свариваемости металлов. Несколько сложнее оп­ределение металлургической свариваемости. Большое число факторов, влияющих на металлургическую свариваемость, тре­бует для ее определения более сложных экспериментальных ис­следований. На практике этот вопрос решается путем проверки химического состава металла шва, его механических свойств, чувствительности к образованию трещин и газовой пори­стости и т. д.
До настоящего времени еще не сформулировано понятие о паяемости металлов – об их способности образовывать со­единения при пайке. Очевидно, решение этого вопроса должно быть аналогичным определению свариваемости металлов. Под паяемоетью металлов и сплавов необходимо понимать их отно­шение ко всей совокупности процессов, происходящих при пайке. Последние, аналогично сварке, могут быть подразде­лены, как уже указывалось выше, на три обобщенных процесса. Следовательно, паяемость и есть отношение металлов и спла­вов к этим процессам.
Однако следует отметить, что с помощью пайки могут быть соединены любые однородные и разнородные металлы. По­этому введение понятия о принципиальной паяемости метал­лов вряд ли имеет практический смысл. Правильный подбор припоез позволяет обеспечить в подавляющем большинстве случаев вполне удовлетворительные свойства соединения в об­ласти непосредственного взаимодействия припоя с паяемым ме­таллом.

Читайте также:  Поклейка гипсокартона на стены — как правильно?

Сварка оцинковки, несколько способов решения задачи

ОСНОВНЫЕ МЕТОДЫ И СПОСОБЫ СВАРКИ

Сварка это процесс получения неразъемного соединения посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действии того и другого. В настоящее время создано очень много методов сварки. Все известные виды сварки принято классифицировать по основным физическим, техническим и технологическим признакам. По физическим признакам, в зависимости от формы используемой энергии, предусматриваются три вида сварки: термическая сварка, термомеханическая сварка и механическая сварка.

Термический вид сварки включает все методы с использованием тепловой энергии (дуговая сварка, газовая сварка, плазменная сварка и т. д.).

Термомеханический вид объединяет все методы сварки, при которых используются давление и тепловая энергия (контактная сварка, диффузионная сварка)

Механический nbsp;вид включает методы сварки, осуществляемые с помощью механической энергии (холодная сварка, сварка трением, ультразвуковая сварка, сварка взрывом).

Методы сварки классифицируются по следующим техническим признакам:

• по типу защитного газа (в активных газах, в инертных газах);
• по способу защиты металла в зоне сварки (на воздухе, в среде защитного газа, в вакууме, под слоем флюса, с комбинированной защитой);
• по степени механизации (ручная, механизированная, автоматизированная, автоматическая);
• по характеру защиты металла в зоне сварки (со струйной защитой, в контролируемой атмосфере).


НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ МЕТОДЫ СВАРКИ

Дуговая (электродуговая) сварка. Дуговая сварка металла это сварка плавлением, при которой нагрев свариваемых кромок осуществляется теплом электрической дуги. Наибольшее применение получили четыре способа дуговой сварки.

Ручная дуговая сварка металла

Может производиться двумя способами:неплавящимся электродом и плавящимся электродом.
При ручной дуговой сварке неплавящимся электродом свариваемые кромки изделия приводят в соприкосновение. Между неплавящимся (угольным или графитовым) электродом и изделием возбуждают дугу. Кромки изделия и вводимый в зону дуги присадочный материал нагреваются до плавления, образуется ванночка расплавленного металла. После затвердевания металл в ванночке образует сварной шов. Этот способ используется при сварке цветных металлов и их сплавов, а также при наплавке твердых сплавов.
При ручной дуговой сварке плавящимся электродом используется так называемый штучный электрод с покрытием-обмазкой. Этот способ является основным при ручной сварке. Электрическая дуга возбуждается аналогично первому способу, но расплавляет и электрод и кромки изделия. Получается общая ванна жидкого металла, которая, охлаждаясь, образует шов.


Автоматическая и полуавтоматическая сварка металла под флюсом

Автоматическая и полуавтоматическая сварка металла под флюсом выполняется путем механизации основных движений, выполняемых сварщиком при ручной сварке металла – подачи электрода в зону дуги и перемещения его вдоль свариваемых кромок изделия. При полуавтоматической сварке механизирована подача электрода в зону дуги, а перемещение электрода вдоль свариваемых кромок производит сварщик вручную. При автоматической сварке металла механизированы все операции, необходимые для этого процесса. Жидкий металл в ванночке защищают от воздействия кислорода и азота воздуха расплавленным шлаком, образованным от плавления флюса, подаваемого в зону дуги. Такая сварка металла обеспечивает высокую производительность и хорошее качество сварного шва.

Дуговая сварка металла в защитном газе

Дуговая сварка металла в защитном газе выполняется неплавящимся (вольфрамовым) или плавящимся электродом. В первом случае сварной шов формируется за счет металла расплавленных кромок изделия. При необходимости в зону дуги подается присадочный материал. Во втором случае подаваемая в зону дуги электродная проволока расплавляется и участвует в образовании шва. Защиту расплавленного шва от окисления и азотирования осуществляют струей защитного газа, оттесняющего атмосферный воздух из зоны дуги.

Электрошлаковая сварка металла

Электрошлаковая сварка металла осуществляется путем плавления металла свариваемых кромок изделия, расположенных вертикально или под углом 45 о , и электрода теплотой, выделяемой током при прохождении через расплавленный шлак. Кроме того, шлак защищает расплавленный металл от воздействия воздуха. Снизу к свариваемым изделиям приваривается вручную поддон. По обе стороны зазора между изделиями прижимаются формирующие шов медные ползуны с водяным охлаждением. Затем на поддон насыпается специальный флюс, над которым располагаются одна или две электродные проволоки. Дуга возбуждается под флюсом между электродами и поддоном. В зону горения дуги электродная проволока подаётся специальным механизмом. За счёт тепла дуги электродная проволока и флюс расплавляются, в результате образуется ванна расплавленного металла и над ней шлаковая ванна. В дальнейшем необходимое тепло образуется за счёт прохождения тока через расплавленный шлак, обладающий высоким сопротивлением (согласно закону Ленца-Джоуля). По мере накопления в ванне жидкого металла и шлака медные ползуны вместе с механизмом подачи электродной проволоки и флюса перемещаются автоматически снизу вверх со скоростью подъёма жидкого металла.

Особые виды сварки металла

В промышленности и строительстве все более широкое распространение получают тугоплавкие и химически активные металлы и сплавы. Они применяются в особо ответственных узлах. Для получения высококачественных швов в этих случаях используют источники с высокой концентрацией теплоты и осуществляют сварку в среде с очень низким содержанием кислорода, азота и водорода. Наиболее часто применяются электронно-лучевая и плазменная сварки.

Электронно-лучевая сварка металла осуществляется путем использования кинетической энергии концентрированного потока электронов, движущихся с большой скоростью в вакууме. Устройство для электронно-лучевой сварки похоже на устройство кинескопа (катод, ускоряющий электрод, магнитная линза, напряжение 30-100 кВ).

Плазменная сварка металла основана на использовании струи ионизированного газа – плазмы, содержащего электрически заряженные частицы и способного проводить ток. Энергия дуговой плазменной струи зависит от сварочного тока, напряжения, расхода газа и др. факторов. Источники питания дуги должны иметь рабочее напряжение более 120 В. Плазмообразующий газ служит также защитой расплавленного металла от окружающего воздуха.


КЛАССИФИКАЦИЯ МЕТОДОВ СВАРКИ ПЛАВЛЕНИЕМ

Существующие методы сварки плавлением могут быть классифицированы по виду источников теплоты, способы сварки – по характеру защиты ванны и свариваемого металла от взаимодействия с атмосферой воздуха, особенности введения теплоты, степени автоматизации процессов и другим признакам. По виду источника теплоты могут быть выделены методы сварки плавле­нием: дуговая электрошлаковая; электронно-лучевая; свето-лучевая; газовая; плазменная; термитная.

По характеру защиты свариваемого металла и сварочной ванны от окружающей атмосферы могут быть выделены способы сварки со шлаковой, газошлаковой и газовой защитой.

По особенностям введения теплоты различают способы сварки с непрерывным нагревом и импульсным.

По степени автоматизации процесса существующие способы сварки могут быть разделены на ручную, механизированную и автоматическую.

Характеристика наиболее широко применяемых в промышлен­ности методов и способов сварки плавлением, учитывающая отме­ченные технологические признаки, приведена в таблице

Отличительные признаки способов сварки

Дуговая сварка

Электрошлаковая сварка

Теплота, выделяющаяся при бомбардировке поверхности на­грева заряженными частицами, и теплота плазмы столба дуги

Теплота, выделя­ющаяся при прохо­ждении тока через расплавленный шлак

Газошлаковая и газовая инертными и активными газа­ми. Местная и общая. При нормальном внешнем и повы­шенном давлениях и в вакууме

Ручная, механизированная и автоматическая

Автоматическая и механизированная

Отличительные признаки способов сварки

Лазерная сварка

Электронно-лучевая сварка

Теплота, выделяющаяся при бомбардировке поверх­ности нагрева электронами, получившими ускорение в поле высокого напряжения

Теплота, выделяющая­ся при поглощении по­верхностью нагрева ин­дуцированного излуче­ния с определенной дли­ной волны

Общая в вакууме

Газовая инертными га­зами. Местная и общая. При нормальном и повы­шенном давлениях и в вакууме

Отличительные признаки способов сварки

Газовая сварка

Плазменная сварка

Термитная сварка

Теплота, полу­ченная при сжи­гании горючего газа в кислороде

Теплота, содержащаяся в ионизированном газовом потоке

Теплота, со­держащаяся в перегретом жидком рас­плаве

Газовая и га­зошлаковая

Газовая, инерт­ными и актив­ными газами. Местная и общая

Ручная и авто­матически

СВАРИВАЕМОСТЬ И ПАЯЕМОСТЬ МЕТАЛЛОВ

Одним из важнейших свойств металлов является их способ-ность подвергаться той или иной обработке. Можно говорить о способйости металлов пластически деформироваться в холод­ном или горячем состоянии, обрабатываться резанием, изме­нять свои свойства под влиянием термической обработки и т. д.. Очевидно, можно и необходимо говорить о способности метал­лов соединяться в процессе сварки и пайки – о их свариваемо­сти и паяемости. Что следует понимать под свариваемостью и паяемостью металлов и как их оценивать?

Содержание понятия свариваемость металлов не остава­лось неизменным. Впервые оно было сформулировано в конце 20-х, в начале 30-х годов прошлого века. В соответствии с уровнем развития сварки и встречающимися затруднениями под свариваемостью понимали отношение металлов к тепло­вому воздействию. При сварке сталей с повышенным содержа­нием углерода в то время наибольшие затруднения вызывало предупреждение появления трещин в околошовных участках.
В последующие годы, с одной стороны, резко расширилась номенклатура металлов и сплавов, используемых в сварных, конструкциях, с другой, – были разработаны и применены на практике многие новые методы сварки, значительно усовершен­ствована технология сварочных процессов, достигнуты большие-успехи в разработке теоретических основ сварки. В этих усло­виях изменились и те затруднения, с которыми приходилось, иметь дело при сварке.
Очевидно, что при определении понятия свариваемости ме­таллов необходимо исходить из физической сущности сварки и отношения к ней металлов. Сварку целесообразно рассматри­вать как сочетание нескольких одновременно протекающих; процессов: взаимная кристаллизация металлов, тепловое воз­действие на металл в околошовных участках и плавление, ме­таллургическая обработка и кристаллизация металла шва. Под свариваемостью, следовательно, необходимо понимать отноше­ние металлов к этим основным процессам.
Если металлы однородны, то взаимная кристаллизация лю­бой формы между ними принципиально возможна. Однако свое­образные условия протекания сварки (высокая температура, рост дендритов от поверхностей частично оплавленных зерен, большая скорость кристаллизации, значительная степень де­формации и др.) в некоторых случаях могут вызвать пониже­ние свойств сварных соединений в области взаимной кристал­лизации.
Понижение свойств металла в области взаимной кристал­лизации возможно и при неправильном подборе присадочного-металла. Например, при сварке алюминиевых сплавов часто-используют присадочные прутки из алюминиевокремниевого-сплава с 5% Si марки АК- Однако при сварке сплавов, содер­жащих магний, магний взаимодействует с кремнием присадоч­ного металла, образуя Mg2Si, включения которого неблагопри­ятно влияют на свойства сварного соединения.
При сварке однородных металлов процесс взаимной кри­сталлизации принципиально возможен. Следует лишь оцени­вать в необходимых случаях степень возможного понижения свойств соединения в области взаимной кристаллизации.
При соединении разнородных металлов процесс взаимной кристаллизации далеко не всегда возможен. Например, эта имеет место тогда, когда металлы образуют химические соеди­нения. В этих случаях внутрикристаллическая форма связи,

между металлами возникнуть не может. Очевидно, такие ме­таллы принципиально сварены быть не могут. Это дает право ввести понятие о принципиальности свариваемости металлов. Принципиальная свариваемость есть способность пары метал­лов в условиях сварки образовать соединения на основе вза­имной кристаллизации (внутрикристаллическая форма связи).
В тех относительно редких случаях, когда разнородные ме­таллы могут быть сварены, необходимо оценивать свойства •сварных соединений в области взаимной кристаллизации – сте­пень их принципиальной свариваемости.
Поскольку существуют два различных вида процесса сварки (сварка с расплавлением металлов и сварка в пластическом со­стоянии), то принципиальную свариваемость необходимо со­ответственно подразделять для каждого из этих видов про­цесса.
Условия протекания второго и третьего процессов опреде­ляются методом сварки и его режимами. Поэтому отношение к ним металлов называется технологической свариваемостью. Технологическая свариваемость, в свою очередь, подразде­ляется на тепловую свариваемость (отношение металлов к теп­ловому воздействию) и металлургическую свариваемость (от­ношение металлов к плавлению, металлургической обработке и последующей кристаллизации).
Оценка тепловой свариваемости производится по отноше­нию к вполне определенному свариваемому металлу. Несколько сложнее с оценкой металлургической свариваемости.
Если свариваются детали из одного металла и применяется аналогичный присадочный металл (или последний отсутствует), оценка металлургической свариваемости производится для вполне определенного металла. Если же свариваются неодина­ковые металлы или присадочный металл иной, то оценку метал­лургической свариваемости необходимо производить с учетом образующихся сплавов в металле шва, что несколько услож­няет вопрос. С другой стороны, путем соответствующего под­бора присадочного металла, обеспечивающего получение оп­тимального состава металла шва, можно улучшить металлур­гическую свариваемость металлов.
Оценку технологической свариваемости необходимо произ­водить применительно к конкретному методу сварки, а иногда и к определенным технологическим режимам. Очень часто ме­талл хорошо сваривается одним методом и неудовлетворитель­но другим. Например, дуралюмин удовлетворительно свари­вается точечной сваркой и плохо – газовой.
Технологическая свариваемость не есть нечто присущее ме­таллам и сплавам. С развитием технологии сварки плохо сва­ривающиеся металлы и сплавы часто становятся хорошо сваривающимися. Правильная оценка технологической сваривае­мости требует глубокого анализа процесса сварки и хорошего изучения свойств свариваемого металла.
В настоящее время разработано много методик определе­ния тепловой свариваемости металлов. Несколько сложнее оп­ределение металлургической свариваемости. Большое число факторов, влияющих на металлургическую свариваемость, тре­бует для ее определения более сложных экспериментальных ис­следований. На практике этот вопрос решается путем проверки химического состава металла шва, его механических свойств, чувствительности к образованию трещин и газовой пори­стости и т. д.
До настоящего времени еще не сформулировано понятие о паяемости металлов – об их способности образовывать со­единения при пайке. Очевидно, решение этого вопроса должно быть аналогичным определению свариваемости металлов. Под паяемоетью металлов и сплавов необходимо понимать их отно­шение ко всей совокупности процессов, происходящих при пайке. Последние, аналогично сварке, могут быть подразде­лены, как уже указывалось выше, на три обобщенных процесса. Следовательно, паяемость и есть отношение металлов и спла­вов к этим процессам.
Однако следует отметить, что с помощью пайки могут быть соединены любые однородные и разнородные металлы. По­этому введение понятия о принципиальной паяемости метал­лов вряд ли имеет практический смысл. Правильный подбор припоез позволяет обеспечить в подавляющем большинстве случаев вполне удовлетворительные свойства соединения в об­ласти непосредственного взаимодействия припоя с паяемым ме­таллом.

Сварка меди инвертором

Вполне профессиональным считается вопрос по сварке изделий из меди. Выбор инвертора является однозначным делом. А вот дело с электродами при работе с медью имеет более значимый характер. Зачастую, на работе, дома или у знакомых приходится быть свидетелем процесса сварки медных изделий. Или вовсе соединение конструкций из различного сплава.

Читайте также:  Самодельная Газонокосилка из дрели

Инвертор позволяет создавать переменное напряжение, что и необходимо для большинства электродов. Используя инвертор, становится возможным проведение ручной дуговой сварки.

Лучший электрод

На сегодняшний день наиболее распространенной маркой электродов является электрод «Комсомолец 100». Данный вид электрода позволяет не только производить сварку медных изделий, но и легко соединит медь со сталью.

Благодаря этой возможности Комсомолец 100 является лидером среди электродов. Ему подвластна работа с медными и полумедными конструкциями.

Данный тип электрода позволяет производить работы под различными углами, в том числе и под наклоном.

При каких возможностях электрод пользуется большой популярностью при проведении сварочных работ. Особенно это касается при проведении работ, связанных со строительством дома или другими подобными работами.

Особенности работы

Сварка медных изделий осуществляется по принципу подачи тока обратной полярности.

Состоит электрод из чистой меди. Защитный слой покрыт железом, сульфуром и марганцем.

Таблица. Параметры электрода к току.

Сечение электрода, мм2

Длина электрода, мм

Сварка ручным способом выполняется за счет протекания постоянного тока в порядке обратной полярности.

Стоит обратить внимание, соединение стыков любых металлоконструкций согласно ГОСТу = 90 градусов.

Создавать сварочный шов – это не только искусство, но и соблюдение технологий. Угол наклона проведения электрода колеблется в пределах 10-20 градусов.

Такой подход позволяет получить наиболее качественный шов.

Если же металл толщиной более 15 мм, то перед сваркой производится предварительный нагрев рабочей поверхности.

Если поставлена задача сварить стыковые швы, то данная работа производится только с одной стороны и в один слой. В этом случае удастся избежать искажение механических свойств изделия. Чтобы купить электроды марки Комсомолец 100, необходимо посетить соответствующую страницу.

Выбор сварочного аппарата

Сегодняшний день предоставляет нам широкий спектр выбора сварочных агрегатов. Для надежного крепления металлических конструкций, как правило используют сварку. Для этой цели используют сварочный инвертор.

При помощи данного агрегата, можно соединить такие металлы как:

Стандарты качества

Безопасность металлоконструкций, прежде всего, должна отвечать существующих требованиям и ГОСТам. Электроды Комсомолец полностью удовлетворяют всем этим документам. При качественной эксплуатации выполнении сварочных работ, данный тип электродов позволяет исключить огрехи в соединениях.

Покупая электроды, важно проверять их на подлинность. Поддельная продукция, как правило, не может избежать различных наплывов и пор защитного покрытия.

Если следовать требованиям ГОСТ, то заводские электроды допускают небольшие местные растрескивания и вмятины. Их размеры также оговорены. Подобно несоответствия не должны превышать трехкратной величины диаметра электрода.

Технические особенности

Электропроводность наплавленного материала должна составлять не более 20%. Сваривание необходимо производить небольшими участками в пределах до 35 мм. После этого производить небольшие перерывы, необходимые для остывания наплавленного металла.

Важные технологической особенностью сварки, является возможность подогрева рабочих поверхностей. После проведения данной процедуры, гарантируется дальнейшее качество нанесенного шва.

Кроме этого стоит производить прокалку электродов.

Образовавшийся шлак на шве после проведения работ подлежит удалению и является производной процесса защиты от растекания металла во время процедур. Производить операции по очищению следует щеткой по металлу или надежным инструментом наподобие отвертки.

Сварка меди

Когда разговор заходит о сварке меди, то необходимо понимать, что этот металл обладает уникальными свойствами. А именно: отличной пластичностью, высокой теплопроводностью и электропроводностью, высочайшей коррозионной стойкостью. Плюс великолепные эстетические качества. Поэтому медь сегодня используется в самых разных сферах. А так как с ней всем приходится встречаться часто, то велика вероятность, что и процессом сварки этого металла будет интересоваться большой круг людей. Поэтому вопрос, а может ли проводиться сварка меди в домашних условиях, сегодня интересует многих.

Особенности сварки меди

Необходимо отметить тот факт, что чем чище медь, тем лучше она сваривается. Но кроме этого на качество процесса влияют и ниже следующие факторы.

Как уже было сказано выше, проще всего сваривать чистую медь без примесей или раскисленную, в которой кислорода всего 0,01%. А так как такая медь встречается редко, в основном в промышленности используются ее сплавы, то рекомендуется сварку проводить в защитных газах или флюсах с присадочными материалами, в которые входят раскислители. А именно: кремний, марганец, алюминий и прочие добавки. Кстати, сварку меди электродами (расплавляющимися) также можно проводить. Единственно – это, чтобы в стержень входили раскислители, о которых было упомянуто выше.

Ручная дуговая сварка медных сплавов

Вообще, дуговая электросварка меди используется часто, особенно в домашних условиях. Целесообразность применения зависит от скорости процесса. При этом может использоваться сварка меди полуавтоматом или автоматом.

Технология сварки меди заключается в следующем.

Но так как толщина медных деталей может варьироваться в больших пределах, то и сам режим сварки будет отличаться. К примеру, для соединения заготовок толщиною 6-12 мм, необходимо разделать кромки так, чтобы образовался V -образный зазор. При этом угол между кромками должен быть в пределах 60-70°. Если используется двусторонняя сварка, то угол можно уменьшить до 50°. Зазор между деталями создается путем сдвига заготовок, чтобы между ними образовалась щель шириною 2,5% от длины самого сварочного шва.

Если раздвижение деталей не производится, то необходимо провести их прихватку. Прихватка проводится неполным проваром шва длиною по 30 мм через каждые 300 мм. При этом должен сохраняться зазор размером 2-4 мм. При самой сварке меди инвертором, доходя до прихватки, ее необходимо удалить, сбив любым ударным инструментом. Потому что двойной провар меди приведет к изменению ее структуры и появлению дефектов внутри сварочного шва.

Если свариваемый металл имеет толщину больше 12 мм, то лучше использовать Х-образную разделку кромок, а соответственно и двустороннюю обварку. Если по каким-то причинам использовать данную разделку невозможно, то можно использовать V -образную. Правда, придется полностью заполнять зазор, на что уйдет больше электродов и времени.

Полезные советы

Ручная аргонодуговая сварка

Сварка меди аргоном – это еще один вариант соединения медных заготовок. Для этого используется постоянный ток прямой полярности, вольфрамовый неплавящийся электрод и присадочный материал из меди, бронзы или медно-никелевого сплава марки МНЖКТ.

Перед началом работ кромки стыка прогревают до 800С. Сварку ведут справа налево, присадочный пруток впереди горелки. Дуга короткая.

Сваривание угольными и графитовыми электродами

Эта разновидность сварки медных сплавов применяется редко. Угольные электроды используются при соединении заготовок толщиной до 15 мм, графитовые больше данной величины. Режим сварки:

Сварка меди и алюминия

Два этих металла можно сварить двумя способами: контактной сваркой и замковым соединением. В первом случае необходимо учитывать, что алюминиевый материал обладает низшей температурой плавления, чем медь. Поэтому при стыковке нужно алюминиевую заготовку брать длиною больше, на поправку плавления.

При сварке рекомендуется проводить обдув зоны сваривания, используя для этого азот. Воздух здесь не пойдет, он тут же будет образовывать оксидную пленку. Если свариваются медные и алюминиевые трубки, то их необходимо надеть на стержень, состыковав в одной точке.

Замковое соединение – это когда на пластину из алюминия накладывается плоская деталь из меди. При этом производится сварка медной заготовки по периметру. При этом ширина шва должна быть равна толщине медной накладки. Процесс проводится с использованием графитовых вставок, которые и будут формировать шов соединения.

Сварка меди со сталью

Варить медь со сталью сложно, но можно. Для этого используются все те же методы, что и при сварке двух стальных заготовок. Единственное, на что необходимо обратить внимание, это разная температура плавления металлов. Поэтому при формировании кромок нужно кромку стальную делать более длиной (в 3,5 раза) и тонкой, чтобы в процессе сварки тонкий металл начинал быстрее плавиться.

Если сварка производится угольными электродами, то процесс проводится на постоянном токе прямой полярности. Длина дуги 14-20 мм, ее напряжение 40-55 вольт, а сила тока 300-550 ампер. Сварка проводится в защитном флюсе, который имеет точно такой же состав, как и при сварке медных сплавов. Сам флюс засыпается в зазор между заготовками.

Иногда встречаются ситуации, когда надо приварить медную шпильку к стальной детали. Для этого нужно применять обратную полярность, сам процесс проводится под флюсом без предварительного прогрева кромок. Стальные шпильки к медным деталям привариваются плохо, поэтому на шпильку надевают в натяг медное кольцо, которое и приваривается к медной заготовке.

Вот такие способы сварки медных сплавов и заготовок, которые сегодня применяются в промышленности и в домашних мастерских. Обязательно посмотрите видео, размещенное на этой странице сайта.

Сварка меди – технологии, электроды, аппараты

Разработано и широко применяется несколько основных методов сварки меди. Современные технологии позволяют избежать появления горячих трещин, пор и другого вида брака. Сварка меди и ее сплавов производится при помощи аргона, инвертора, проволокой и электродами. Рассмотрев основные методы можно выбрать наиболее подходящий и избежать многих проблем.

Сварка меди и ее сплавов: технология

Перед тем как начать сваривать медь и ее сплавы необходимо тщательно подготовить изделие. Мерные заготовки вырезаются при помощи шлифовальной машинки, токарного или фрезерного станка. У меди толщиной 6-18 миллиметров нужно подготовить кромки. Они должны быть V- или X-образными. (При больших объемах целесообразно будет приобрести кромкорез-фаскосниматель.)

Перед началом работы швы тщательно очищаются от загрязнения, окисления. Чтобы сварка меди прошла успешно необходимо защитить ванну от воздействия кислорода. Для это рекомендуется применить электродную проволоку, которая должна быть легирована алюминием, фосфором. В некоторых случаях требуется подогревать медь.

Она хорошо соединяется при ведении работ с помощью плавящихся электродов. Важно знать, что при этом длина дуги должна быть 4-5 миллиметров. Применяя технологию импульсно-дуговой сварки в аргоне можно выполнить любые виды швов, даже потолочный, сваривать очень тонкий металл. Под него рекомендуется подложить подкладные элементы.

Чем варить медь: способы

Для успешной и качественной сварки меди чаще всего применяют инверторы, полуавтоматы, газовые аппараты, аргоновые. Ручную, полуавтоматическую и автоматическую сварку купрума и его соединений можно выполнить плавящимися и неплавящимися электродами. Для работы с медью и сталью используется автоматическая дуговая технология, флюс.

Электрошлаковый метод рекомендуется для соединения изделий толщиной 30-55 миллиметров. Используя инвертор можно применить угольный электрод, например, ESAB OK Carbon, Weldline CARBONAIR PLUS. В магазине представлен широкий выбор производителей. Отлично зарекомендовала себя сварка меди графитовым типом электрода. Ниже приведены несколько подзаголовков, в которых дано более подробное описание лучших способов сварки меди и ее сплавов.

Инвертором

Подобрать электроды, наиболее подходящие для сварки меди с использованием инверторов, можно посетив соответствующий раздел сайта. Рекомендуется марка Комсомолец 100. Инвертор рассчитан на создание постоянного напряжения, ток обратной или прямой полярности. Работать нужно с небольшим перерывом. Сваривают участки по 30-40 миллиметров, после чего они должны остыть естественным путем. Угол наклона электрода должен быть 10-20 градусов.

Читайте также:  Оформление игровой зоны для детей на мансарде - 25 фото-примеров

Полуавтоматом

При работе полуавтоматом ведется сварка медной проволокой, она хотя и тонкая, но очень качественная, позволяет достичь хороших результатов. Если толщина металла больше 6 миллиметров, то рекомендуется подготовить кромки болгаркой или фаскоснимателем. Они должны быть V-образными с притуплением до 4 миллиметров. Чтобы шов не был пористым, сварка производится без поперечных колебаний.

При работе на полуавтомате можно применить проволоку М2 толщиной 2 мм. Рекомендуемое напряжение 30 В, 300 А. Работа делается поперечными движениями. При этом может использоваться флюс К-13, АН26, проволока М1-3. Прочность шва меди, сделанного на полуавтомате, не уступает по показателям основному металлу.

Аргоном

Аргон служит отличным защитным средством. Применяются в работе вольфрамовые виды электродов. Роль присадки выполняет проволока. Работа ведется на постоянном токе обратной полярности. Тонкие медные изделия соединяют без подогрева. Сварку рекомендуется выполнять справа налево. Нужно выдерживать угол наклона электрода 90 градусов, прутка 15. В зависимости от толщины металла газ расходуется в пределах 7-18 литров в минуту. Сварочный ток выставляется от 80 до 500 ампер.

Газовая сварка

Чтобы шов при ведении газовой сварки меди получился прочным и качественным, необходимо следить за расходом газа. Если медь тоньше 10 мм хватит 150 литров на час работы, а если толще, то потребуется уже 200 литров.

Если заготовка толще 10 миллиметров, то можно использовать две горелки. Технология подразумевает использование флюсов. Они бор содержащие. Допускается легирование металла, его раскисление при помощи присадочной проволоки. Метод подходит и для соединения сплавов меди. Важно знать, что присадочная проволока по своему составу должна быть идентична свариваемому основному металлу.

Видео

Можно посмотреть небольшой ролик, где наглядно показан процесс крупным планом.

Угольным электродом

Распространена сварка меди графитовым электродом, часто применяется угольный аналог. Есть разные методы ее проведения. Дуга может гореть сразу между парой электродов. Она бывает независимой. Ее можно поджигать и между электродом, и свариваемым изделием. Технология похожа на газовую сварку. Часто применяется проволока БрКМц3-1. Работа может выполняться на открытом воздухе. Соединение меди угольным электродом будет полностью соответствовать требованиям, которые предъявляются к механическим свойствам.

Инвертором угольным электродом

Угольные электроды ESAB ARCAIR

Угольные электроды плавятся при температуре в три раза большей, чем у свариваемой ими меди. Их расход при работе инвертором небольшой. Они нагреваются моментально. Угольные стержни плавятся при небольшом токе. Для работы ими необходимо иметь опыт. Полученный шов обычно отличается качеством, хорошей сопротивляемостью к окислению, плотностью и прочностью. Угол наклона стержня должен быть до 30 градусов. Ток устанавливается в промежутке 35-130 ампер, что зависит от толщины меди. Инвертором и угольными электродами можно соединять провода, скрутки. Такие аппараты легкие и удобные.

Сварка нихрома с медью

Сварка нихрома с медью угольным электродом позволяет добиться хороших результатов. Дуга при этом будет гореть хорошо, устойчиво, ее длина достигает показателя 30-50 мм. Электрод не плавится, при этом его конец нагревается до большой температуры. Он выдает мощную термоэлектронную реакцию, что дает ему возможность устойчиво гореть уже при токе в 5-10 А. Угольный вид электрода при работе с медью и нихромом медленно испаряется. Он практически не прилипает, чем значительно облегчает работу.

Сварка угольным электродом в домашних условиях

Сварка меди угольным видом электродов в домашних условиях возможна при помощи простого недорого инвертора. Его можно запитать от обычной сети. Он не требователен к условиям. По цене угольные электроды доступны для всех. С их помощью можно соединить проволоку, заделать дырки в радиаторе автомобиля. Чтобы научиться пользоваться ими не профессионалу достаточно прочитать несколько советов и посмотреть видеороликов.

Сварочный аппарат для меди

Качественные сварочные аппараты для меди:

Популярные модели производит TESLA, СПЕЦЭЛЕКТРОМАШ, ЭСАБ.

BUDDY TIG 160 от ESAB (на фото справа) имеет двух и четырехтактные режимы включения горелки. С его помощью можно соединять нержавейку и большинство других видов металлов. Он совместим практически с любыми генераторами.

Инвертор RENEGADE ES 300i ESAB сохраняет в памяти несколько параметров сварки. Автоматически устанавливает лучшие параметры пуска по настроенному току. Он легкий, но у него высокая мощность.

Инверторные аппараты позволяют сваривать медные прутки, они вырабатывают ток 60-110 ампер. Для них нужно покупать медь/угольные электроды. Компания HUNTER выпускает полупрофессиональные модели, например, ММА 257D, рассчитанные на непрерывную работу продолжительностью два часа.

TESLA известна надежными аппаратами типа ММА 265, 275, 255. У них есть функция возбуждения бесконтактной дуги. Они без проблем подключаются к обычной бытовой сети. Ими удобно сваривать медь и ее сплавы, цветные металлы.

Для сварки электродами

Импульсно-дуговая сварка медных пластин возможна вольфрамовыми электродами в аргонной среде при помощи аппарата Orion 150s или 250s. Они имеют небольшой вес, позволяют сваривать медь качественно и надежно. Инверторное сварочное устройство Ресанта САИ-220 ПН может подключаться к сети напряжением 140-220 вольт. С ним легко перемещаться, он оснащен принудительной системой охлаждения, поэтому не перегревается.

Для сварки проволокой

Для выполнения работ по сварке меди проволокой применяют полуавтомат инверторный Энергомаш СА-97ПА20. Он имеет небольшой вес 13 килограмм. Он позволяет работать с проволокой разной толщины 0,6-0,9 мм.

Плавную подачу материала обеспечивает модель Shyuan MIG/MMA-290 со скоростью 2,5-13 метров в минуту. Устройство дает возможность применять кассеты 1-5 килограмм, позволяет работать с электродами.

Инверторный сварочный полуавтомат Союз САС-97ПА195 характеризуется наличием функции холостого хода 60 Вольт. Он имеет диапазон регулировки рабочего напряжения 15-23 вольта. Для него подойдет проволока 0,8-1 мм. У него небольшой вес 10 килограмм, он удобен и надежен.

Для сварки медных проводов

Сварочным аппаратом ТС-700-2 можно соединить медные жилы сечением 22 кв. мм. Он компактный, легкий, его вес всего четыре килограмма, питается от обычной сети, потребляет чуть больше 1 кВт. Его можно носить в сумке. Одного угольного электрода хватит на то чтобы произвести 700 сварок.

Медные скрутки рекомендуется сваривать, используя универсальные инверторные аппараты, например, РЕСАНТА САИ-160, QUATTRO ELEMENTI A 160 Nano 643-255, СВАРОГ ARC 160 Easy Z213 H. Немецкий прибор FUBAG IQ 160 дает возможность выставлять ток 10-160 А. Его вес почти семь килограмм, стоимость 7 тысяч рублей (на момент написания этой статьи).

СВАРОГ ARC 160 Easy Z213 H от российского производителя имеет бесступенчатый регулятор тока. Им удобно пользоваться, потому что кабель подключается посредством особых разъемов. Его вес 4 килограмма, примерная стоимость 9 тысяч рублей.

Функции аппаратов, значительно облегчающих процесс сварки, это:

– защита от залипания;

– не реагирование устройства на перепад тока;

Для дома лучше купить аппарат мощностью до 4 кВт. Силы тока 160 ампер хватит чтобы сварить металл 5 миллиметровой толщины. Основным критерием выбора является цель использования, стоимость и набор функций.

Выполняем сварку меди в домашних условиях

Сваривание металлических деталей – это технологическая процедура, позволяющая получать неразъемные соединения посредством формирования связи между межмолекулярными и межатомными частицами материала при значительном нагреве до расплавления, пластической деформации. Точечная сварка меди в домашних условиях используется, как правило, для соединения многих металлов, их сплавов во всех производственных сферах, даже медицине.

Для осуществления сварочных работ могут использоваться разные источники энергии: трение, ультразвук, электрическая дуга, электрический ток. Современные технологии настолько совершенны, что работы, связанные со сварочным соединением металлических конструкций можно выполнять не только на промышленных предприятиях, но и в полевых условиях, на водоемах, под водой, даже в космосе.

Но, как и в любом виде деятельности существуют свои нюансы, преимущества и недостатки, требования к безопасности проведения работ и прочее. Так, при организации сварочных работ в домашних условиях с заготовками из меди, алюминия, латуни, нержавеющей стали необходимо соблюдать установленные меры предосторожности. Данный тип деятельности относится к особо опасным для здоровья человека: существует опасность поражения ультрафиолетовыми излучениями органов зрения, попадания расплавленного металла на кожу, поражения электрическим током и пр.

Технология газовой сварки меди

Газовая сварка меди в домашних условиях является самой распространенной технологией, применяемой в бытовых условиях. Получаемый сварочный шов по данной методике отличается высокой прочностью. Именно благодаря этому параметру газовая сварка пользуется большим спросом у домашних мастеров. Для выполнения соединения медных изделий на дому необходимо иметь под рукой:

Некоторые советы опытных сварщиков

Все необходимые условия предварительной подготовки к сварочным работам выполнены. Значит можно приступать непосредственно к соединению подготовленных медных изделий.

Рекомендации

На этом можно считать соединение медных деталей завершенным.

Аргонно-дуговая сварка медных образцов

Аргонно-дуговая сварка в домашних условиях выполняется при помощи сварочного оборудования с использованием постоянного тока, неплавящимися вольфрамовыми электродами. Процедура напоминает паяние изделий: электрод нагревается до высокой температуры. В результате медь начинает плавиться.

При такой методике сваривания важно мгновенно охлаждать соединяемые участки. Аргонно-дуговая сварка предусматривает использование аргона, медной присадочной проволоки, которая предварительно очищается от лакокрасочного изоляционного покрытия.

Сварка меди: область применение технологии

Аргоновая сварка применяется для проведения ремонта конструкций, изготовленных из меди. Она достаточно эффективно себя показала при выполнении сварочных работ на труднодоступных участках.

Аргонно-дуговая сварка достаточно востребована на производственных предприятиях, а при наличии соответствующего оборудования также успешно может применяться в бытовых условиях. Если в наличии есть инверторное оборудование для сварки, специальные плавкие электроды, процедуру соединения медных образцов можно осуществлять по технологии сваривания стальных изделий. Принципиальных отличий в данном случае практически нет. Но, при такой методике соединения намного сложнее сделать вертикальный шов, нежели горизонтальный.

Что необходимо знать об электродах, используемых для сваривания медных деталей

Чтобы сварочный шов получился высокого качества, рекомендуется применять электроды, покрытые специальным составом. Подобное покрытие необходимо для продуцирования шлака, образующегося с окислами металла. Оно не будет давать воздуху соприкасаться со сварным швом. Обмазка заполняет пустоты, формирующиеся в момент сваривания деталей за счет выгорания компонентов и впоследствии вводит новые компоненты в шов. Такая обмазка способствует лучшей устойчивости электрической дуги. Шлаковый слой, продуцируемый данным покрытием, будет замедлять охлаждение расплавленной меди, при этом из шва будет выходить больше газов.

Электроды, применяемые в процессе сваривания, подразделяются на два типа:

При выборе электродов необходимо смотреть на их цвет:

Сваривание латунных конструкций

Сварка латуни в домашних условиях – это довольно сложная процедура, так как в состав латуни входит цинк, который при нагревании испаряется, в результате чего изделие теряет первоначальную прочность.

Сама латунь представляет собой сплав с цинком. Технология соединения деталей, изготовленных из латуни, считается сложной из-за испарения цинка при высоких температурах, данный химический элемент мгновенно окисляется, в результате чего формируется ядовитая тугоплавкая окись. Поэтому сварка латунных образцов должна производиться в специально оборудованных местах, оснащенных вытяжкой, сварщики должны работать в респираторах.

Основные требования, предъявляемые при сварке латуни

При выполнении сваривания деталей аргоном ощущается характерный непрерывный треск, а сварочная дуга имеет удивительный цвет. Это все из-за наличия в сплаве цинка. Латунь в процессе соединения не прогорает, не отлетает отдельными кусками, так как она плавится. Опытные сварщики советуют варить латунь отдельными участками, не расплавлять ее сплошным слоем. При сплошном расплавлении материала существует вероятность прожигания металла.

Если необходимо заварить кратер, тогда рекомендуется постепенно уменьшать напряжение сварки, повышать длину дуги с отведением впоследствии ее в сторону от обрабатываемого изделия. В процессе такого соединения шов заполняется в полном объеме, поджаривание цинка приводит к его испарению, в результате чего в металле образуются дефекты. Чтобы уменьшить испарение данного химического элемента, необходимо увеличить в пламени наличие кислорода, использовать присадочные материалы, легированные бором, алюминием, кремнием.

Совет! При выполнении соединения деталей из латуни осуществляйте сварочные работы на улице, не пренебрегайте требований безопасности!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *